Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study
An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) an...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2020-09, Vol.47 (17), p.n/a, Article 2020 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 47 |
creator | Dolinar, Erica K. Campbell, James R Lolli, Simone Ozog, Scott C. Yorks, John E Camacho, Christopher Gu, Yu Bucholtz, Anthony Mcgill, Matthew J |
description | An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure. |
doi_str_mv | 10.1029/2020GL088871 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2020GL088871_GRL60884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441904061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</originalsourceid><addsrcrecordid>eNqNkM9u1DAQxiMEEkvhxpGDJY6wxf-ysbmt0naLFKlSdzlHXnvCukrjYDtFufEI3Hg_noRZbYU4IQ4ejzW_7xvrK4rXjJ4zyvUHTjndNFQpVbEnxYJpKZeK0uppsaBUY8-r1fPiRUp3lFJBBVsUP7cwJJ_9Ax5IxA9kazL0vc9AGu9M_PX9xwVE_wCOXKbs73GaSOjIhZnxBWQXRkRChyUfAOs634c0HiACuRmzt6bvZ7I7oHPtY5wSqfswOXJrnDe4F8hViNYPXz6SNalNArLNk5tfFs860yd49XifFZ-vLnf19bK52Xyq183SCl7JpdVaG2e5gLLU4KTUnS2V2isNhq5EiSPLFE6Fg05bBrrcU2Gdssooxrk4K96efMcYvk6QcnsXpjjgypZLyTSVdMWQen-ibAwpRejaMWIUcW4ZbY_Rt39Hj7g64d9gH7pkPQwW_kgw-7LiR1_sWFX7jDmEoQ7TkFH67v-lSPNH2vcw__NT7ea2WWErUfTmJBpMMu2QYzqC6MiEEKX4DTqzs1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441904061</pqid></control><display><type>article</type><title>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>NASA Technical Reports Server</source><source>Wiley Online Library (Open Access Collection)</source><creator>Dolinar, Erica K. ; Campbell, James R ; Lolli, Simone ; Ozog, Scott C. ; Yorks, John E ; Camacho, Christopher ; Gu, Yu ; Bucholtz, Anthony ; Mcgill, Matthew J</creator><creatorcontrib>Dolinar, Erica K. ; Campbell, James R ; Lolli, Simone ; Ozog, Scott C. ; Yorks, John E ; Camacho, Christopher ; Gu, Yu ; Bucholtz, Anthony ; Mcgill, Matthew J</creatorcontrib><description>An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL088871</identifier><language>eng</language><publisher>Goddard Space Flight Center: Wiley</publisher><subject>Aerosol transport ; Atmosphere ; cirrus cloud ; cirrus cloud detection and retrieval ; Cirrus clouds ; Cloud optical depth ; Cloud physics ; cloud radiative forcing ; Clouds ; Earth Resources And Remote Sensing ; Geology ; Geosciences, Multidisciplinary ; Instruments ; Lidar ; Meteorological satellites ; Normalizing ; Optical analysis ; Optical thickness ; Physical Sciences ; Physics ; Radiative forcing ; radiative transfer model ; satellite lidar ; Satellites ; Science & Technology ; Transportation systems</subject><ispartof>Geophysical research letters, 2020-09, Vol.47 (17), p.n/a, Article 2020</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000572406100017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</citedby><cites>FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</cites><orcidid>0000-0002-3412-0794 ; 0000-0003-0251-4550 ; 0000-0002-4276-0708 ; 0000-0001-5486-3811 ; 0000-0001-6111-152X ; 0000-0003-1451-4478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL088871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL088871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11518,27928,27929,45578,45579,46413,46472,46837,46896</link.rule.ids></links><search><creatorcontrib>Dolinar, Erica K.</creatorcontrib><creatorcontrib>Campbell, James R</creatorcontrib><creatorcontrib>Lolli, Simone</creatorcontrib><creatorcontrib>Ozog, Scott C.</creatorcontrib><creatorcontrib>Yorks, John E</creatorcontrib><creatorcontrib>Camacho, Christopher</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Bucholtz, Anthony</creatorcontrib><creatorcontrib>Mcgill, Matthew J</creatorcontrib><title>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</title><title>Geophysical research letters</title><addtitle>GEOPHYS RES LETT</addtitle><description>An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.</description><subject>Aerosol transport</subject><subject>Atmosphere</subject><subject>cirrus cloud</subject><subject>cirrus cloud detection and retrieval</subject><subject>Cirrus clouds</subject><subject>Cloud optical depth</subject><subject>Cloud physics</subject><subject>cloud radiative forcing</subject><subject>Clouds</subject><subject>Earth Resources And Remote Sensing</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Instruments</subject><subject>Lidar</subject><subject>Meteorological satellites</subject><subject>Normalizing</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Radiative forcing</subject><subject>radiative transfer model</subject><subject>satellite lidar</subject><subject>Satellites</subject><subject>Science & Technology</subject><subject>Transportation systems</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkM9u1DAQxiMEEkvhxpGDJY6wxf-ysbmt0naLFKlSdzlHXnvCukrjYDtFufEI3Hg_noRZbYU4IQ4ejzW_7xvrK4rXjJ4zyvUHTjndNFQpVbEnxYJpKZeK0uppsaBUY8-r1fPiRUp3lFJBBVsUP7cwJJ_9Ax5IxA9kazL0vc9AGu9M_PX9xwVE_wCOXKbs73GaSOjIhZnxBWQXRkRChyUfAOs634c0HiACuRmzt6bvZ7I7oHPtY5wSqfswOXJrnDe4F8hViNYPXz6SNalNArLNk5tfFs860yd49XifFZ-vLnf19bK52Xyq183SCl7JpdVaG2e5gLLU4KTUnS2V2isNhq5EiSPLFE6Fg05bBrrcU2Gdssooxrk4K96efMcYvk6QcnsXpjjgypZLyTSVdMWQen-ibAwpRejaMWIUcW4ZbY_Rt39Hj7g64d9gH7pkPQwW_kgw-7LiR1_sWFX7jDmEoQ7TkFH67v-lSPNH2vcw__NT7ea2WWErUfTmJBpMMu2QYzqC6MiEEKX4DTqzs1U</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Dolinar, Erica K.</creator><creator>Campbell, James R</creator><creator>Lolli, Simone</creator><creator>Ozog, Scott C.</creator><creator>Yorks, John E</creator><creator>Camacho, Christopher</creator><creator>Gu, Yu</creator><creator>Bucholtz, Anthony</creator><creator>Mcgill, Matthew J</creator><general>Wiley</general><general>Amer Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>CYE</scope><scope>CYI</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3412-0794</orcidid><orcidid>https://orcid.org/0000-0003-0251-4550</orcidid><orcidid>https://orcid.org/0000-0002-4276-0708</orcidid><orcidid>https://orcid.org/0000-0001-5486-3811</orcidid><orcidid>https://orcid.org/0000-0001-6111-152X</orcidid><orcidid>https://orcid.org/0000-0003-1451-4478</orcidid></search><sort><creationdate>20200916</creationdate><title>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</title><author>Dolinar, Erica K. ; Campbell, James R ; Lolli, Simone ; Ozog, Scott C. ; Yorks, John E ; Camacho, Christopher ; Gu, Yu ; Bucholtz, Anthony ; Mcgill, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosol transport</topic><topic>Atmosphere</topic><topic>cirrus cloud</topic><topic>cirrus cloud detection and retrieval</topic><topic>Cirrus clouds</topic><topic>Cloud optical depth</topic><topic>Cloud physics</topic><topic>cloud radiative forcing</topic><topic>Clouds</topic><topic>Earth Resources And Remote Sensing</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Instruments</topic><topic>Lidar</topic><topic>Meteorological satellites</topic><topic>Normalizing</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Radiative forcing</topic><topic>radiative transfer model</topic><topic>satellite lidar</topic><topic>Satellites</topic><topic>Science & Technology</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolinar, Erica K.</creatorcontrib><creatorcontrib>Campbell, James R</creatorcontrib><creatorcontrib>Lolli, Simone</creatorcontrib><creatorcontrib>Ozog, Scott C.</creatorcontrib><creatorcontrib>Yorks, John E</creatorcontrib><creatorcontrib>Camacho, Christopher</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Bucholtz, Anthony</creatorcontrib><creatorcontrib>Mcgill, Matthew J</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolinar, Erica K.</au><au>Campbell, James R</au><au>Lolli, Simone</au><au>Ozog, Scott C.</au><au>Yorks, John E</au><au>Camacho, Christopher</au><au>Gu, Yu</au><au>Bucholtz, Anthony</au><au>Mcgill, Matthew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</atitle><jtitle>Geophysical research letters</jtitle><stitle>GEOPHYS RES LETT</stitle><date>2020-09-16</date><risdate>2020</risdate><volume>47</volume><issue>17</issue><epage>n/a</epage><artnum>2020</artnum><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.</abstract><cop>Goddard Space Flight Center</cop><pub>Wiley</pub><doi>10.1029/2020GL088871</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3412-0794</orcidid><orcidid>https://orcid.org/0000-0003-0251-4550</orcidid><orcidid>https://orcid.org/0000-0002-4276-0708</orcidid><orcidid>https://orcid.org/0000-0001-5486-3811</orcidid><orcidid>https://orcid.org/0000-0001-6111-152X</orcidid><orcidid>https://orcid.org/0000-0003-1451-4478</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2020-09, Vol.47 (17), p.n/a, Article 2020 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_wiley_primary_10_1029_2020GL088871_GRL60884 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; NASA Technical Reports Server; Wiley Online Library (Open Access Collection) |
subjects | Aerosol transport Atmosphere cirrus cloud cirrus cloud detection and retrieval Cirrus clouds Cloud optical depth Cloud physics cloud radiative forcing Clouds Earth Resources And Remote Sensing Geology Geosciences, Multidisciplinary Instruments Lidar Meteorological satellites Normalizing Optical analysis Optical thickness Physical Sciences Physics Radiative forcing radiative transfer model satellite lidar Satellites Science & Technology Transportation systems |
title | Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivities%20in%20Satellite%20Lidar%E2%80%90Derived%20Estimates%20of%20Daytime%20Top%E2%80%90of%E2%80%90the%E2%80%90Atmosphere%20Optically%20Thin%20Cirrus%20Cloud%20Radiative%20Forcing:%20A%20Case%20Study&rft.jtitle=Geophysical%20research%20letters&rft.au=Dolinar,%20Erica%20K.&rft.date=2020-09-16&rft.volume=47&rft.issue=17&rft.epage=n/a&rft.artnum=2020&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL088871&rft_dat=%3Cproquest_wiley%3E2441904061%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441904061&rft_id=info:pmid/&rfr_iscdi=true |