Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study

An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2020-09, Vol.47 (17), p.n/a, Article 2020
Hauptverfasser: Dolinar, Erica K., Campbell, James R, Lolli, Simone, Ozog, Scott C., Yorks, John E, Camacho, Christopher, Gu, Yu, Bucholtz, Anthony, Mcgill, Matthew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Geophysical research letters
container_volume 47
creator Dolinar, Erica K.
Campbell, James R
Lolli, Simone
Ozog, Scott C.
Yorks, John E
Camacho, Christopher
Gu, Yu
Bucholtz, Anthony
Mcgill, Matthew J
description An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.
doi_str_mv 10.1029/2020GL088871
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_wiley_primary_10_1029_2020GL088871_GRL60884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441904061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</originalsourceid><addsrcrecordid>eNqNkM9u1DAQxiMEEkvhxpGDJY6wxf-ysbmt0naLFKlSdzlHXnvCukrjYDtFufEI3Hg_noRZbYU4IQ4ejzW_7xvrK4rXjJ4zyvUHTjndNFQpVbEnxYJpKZeK0uppsaBUY8-r1fPiRUp3lFJBBVsUP7cwJJ_9Ax5IxA9kazL0vc9AGu9M_PX9xwVE_wCOXKbs73GaSOjIhZnxBWQXRkRChyUfAOs634c0HiACuRmzt6bvZ7I7oHPtY5wSqfswOXJrnDe4F8hViNYPXz6SNalNArLNk5tfFs860yd49XifFZ-vLnf19bK52Xyq183SCl7JpdVaG2e5gLLU4KTUnS2V2isNhq5EiSPLFE6Fg05bBrrcU2Gdssooxrk4K96efMcYvk6QcnsXpjjgypZLyTSVdMWQen-ibAwpRejaMWIUcW4ZbY_Rt39Hj7g64d9gH7pkPQwW_kgw-7LiR1_sWFX7jDmEoQ7TkFH67v-lSPNH2vcw__NT7ea2WWErUfTmJBpMMu2QYzqC6MiEEKX4DTqzs1U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441904061</pqid></control><display><type>article</type><title>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>NASA Technical Reports Server</source><source>Wiley Online Library (Open Access Collection)</source><creator>Dolinar, Erica K. ; Campbell, James R ; Lolli, Simone ; Ozog, Scott C. ; Yorks, John E ; Camacho, Christopher ; Gu, Yu ; Bucholtz, Anthony ; Mcgill, Matthew J</creator><creatorcontrib>Dolinar, Erica K. ; Campbell, James R ; Lolli, Simone ; Ozog, Scott C. ; Yorks, John E ; Camacho, Christopher ; Gu, Yu ; Bucholtz, Anthony ; Mcgill, Matthew J</creatorcontrib><description>An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL088871</identifier><language>eng</language><publisher>Goddard Space Flight Center: Wiley</publisher><subject>Aerosol transport ; Atmosphere ; cirrus cloud ; cirrus cloud detection and retrieval ; Cirrus clouds ; Cloud optical depth ; Cloud physics ; cloud radiative forcing ; Clouds ; Earth Resources And Remote Sensing ; Geology ; Geosciences, Multidisciplinary ; Instruments ; Lidar ; Meteorological satellites ; Normalizing ; Optical analysis ; Optical thickness ; Physical Sciences ; Physics ; Radiative forcing ; radiative transfer model ; satellite lidar ; Satellites ; Science &amp; Technology ; Transportation systems</subject><ispartof>Geophysical research letters, 2020-09, Vol.47 (17), p.n/a, Article 2020</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>2020. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000572406100017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</citedby><cites>FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</cites><orcidid>0000-0002-3412-0794 ; 0000-0003-0251-4550 ; 0000-0002-4276-0708 ; 0000-0001-5486-3811 ; 0000-0001-6111-152X ; 0000-0003-1451-4478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL088871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL088871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11518,27928,27929,45578,45579,46413,46472,46837,46896</link.rule.ids></links><search><creatorcontrib>Dolinar, Erica K.</creatorcontrib><creatorcontrib>Campbell, James R</creatorcontrib><creatorcontrib>Lolli, Simone</creatorcontrib><creatorcontrib>Ozog, Scott C.</creatorcontrib><creatorcontrib>Yorks, John E</creatorcontrib><creatorcontrib>Camacho, Christopher</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Bucholtz, Anthony</creatorcontrib><creatorcontrib>Mcgill, Matthew J</creatorcontrib><title>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</title><title>Geophysical research letters</title><addtitle>GEOPHYS RES LETT</addtitle><description>An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.</description><subject>Aerosol transport</subject><subject>Atmosphere</subject><subject>cirrus cloud</subject><subject>cirrus cloud detection and retrieval</subject><subject>Cirrus clouds</subject><subject>Cloud optical depth</subject><subject>Cloud physics</subject><subject>cloud radiative forcing</subject><subject>Clouds</subject><subject>Earth Resources And Remote Sensing</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Instruments</subject><subject>Lidar</subject><subject>Meteorological satellites</subject><subject>Normalizing</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Radiative forcing</subject><subject>radiative transfer model</subject><subject>satellite lidar</subject><subject>Satellites</subject><subject>Science &amp; Technology</subject><subject>Transportation systems</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkM9u1DAQxiMEEkvhxpGDJY6wxf-ysbmt0naLFKlSdzlHXnvCukrjYDtFufEI3Hg_noRZbYU4IQ4ejzW_7xvrK4rXjJ4zyvUHTjndNFQpVbEnxYJpKZeK0uppsaBUY8-r1fPiRUp3lFJBBVsUP7cwJJ_9Ax5IxA9kazL0vc9AGu9M_PX9xwVE_wCOXKbs73GaSOjIhZnxBWQXRkRChyUfAOs634c0HiACuRmzt6bvZ7I7oHPtY5wSqfswOXJrnDe4F8hViNYPXz6SNalNArLNk5tfFs860yd49XifFZ-vLnf19bK52Xyq183SCl7JpdVaG2e5gLLU4KTUnS2V2isNhq5EiSPLFE6Fg05bBrrcU2Gdssooxrk4K96efMcYvk6QcnsXpjjgypZLyTSVdMWQen-ibAwpRejaMWIUcW4ZbY_Rt39Hj7g64d9gH7pkPQwW_kgw-7LiR1_sWFX7jDmEoQ7TkFH67v-lSPNH2vcw__NT7ea2WWErUfTmJBpMMu2QYzqC6MiEEKX4DTqzs1U</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Dolinar, Erica K.</creator><creator>Campbell, James R</creator><creator>Lolli, Simone</creator><creator>Ozog, Scott C.</creator><creator>Yorks, John E</creator><creator>Camacho, Christopher</creator><creator>Gu, Yu</creator><creator>Bucholtz, Anthony</creator><creator>Mcgill, Matthew J</creator><general>Wiley</general><general>Amer Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>CYE</scope><scope>CYI</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3412-0794</orcidid><orcidid>https://orcid.org/0000-0003-0251-4550</orcidid><orcidid>https://orcid.org/0000-0002-4276-0708</orcidid><orcidid>https://orcid.org/0000-0001-5486-3811</orcidid><orcidid>https://orcid.org/0000-0001-6111-152X</orcidid><orcidid>https://orcid.org/0000-0003-1451-4478</orcidid></search><sort><creationdate>20200916</creationdate><title>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</title><author>Dolinar, Erica K. ; Campbell, James R ; Lolli, Simone ; Ozog, Scott C. ; Yorks, John E ; Camacho, Christopher ; Gu, Yu ; Bucholtz, Anthony ; Mcgill, Matthew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3274-c999adc23e559ed449fc588b89ea0635dc2c183e53def9c1e95b03cd8c8a81223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerosol transport</topic><topic>Atmosphere</topic><topic>cirrus cloud</topic><topic>cirrus cloud detection and retrieval</topic><topic>Cirrus clouds</topic><topic>Cloud optical depth</topic><topic>Cloud physics</topic><topic>cloud radiative forcing</topic><topic>Clouds</topic><topic>Earth Resources And Remote Sensing</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Instruments</topic><topic>Lidar</topic><topic>Meteorological satellites</topic><topic>Normalizing</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Radiative forcing</topic><topic>radiative transfer model</topic><topic>satellite lidar</topic><topic>Satellites</topic><topic>Science &amp; Technology</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolinar, Erica K.</creatorcontrib><creatorcontrib>Campbell, James R</creatorcontrib><creatorcontrib>Lolli, Simone</creatorcontrib><creatorcontrib>Ozog, Scott C.</creatorcontrib><creatorcontrib>Yorks, John E</creatorcontrib><creatorcontrib>Camacho, Christopher</creatorcontrib><creatorcontrib>Gu, Yu</creatorcontrib><creatorcontrib>Bucholtz, Anthony</creatorcontrib><creatorcontrib>Mcgill, Matthew J</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolinar, Erica K.</au><au>Campbell, James R</au><au>Lolli, Simone</au><au>Ozog, Scott C.</au><au>Yorks, John E</au><au>Camacho, Christopher</au><au>Gu, Yu</au><au>Bucholtz, Anthony</au><au>Mcgill, Matthew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study</atitle><jtitle>Geophysical research letters</jtitle><stitle>GEOPHYS RES LETT</stitle><date>2020-09-16</date><risdate>2020</risdate><volume>47</volume><issue>17</issue><epage>n/a</epage><artnum>2020</artnum><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>An optically thin cirrus cloud was profiled concurrently with nadir‐pointing 1,064 nm lidars on 11 August 2017 over eastern Texas, including NASA's airborne Cloud Physics Lidar (CPL) and space‐borne Clouds and Aerosol Transport System (CATS) instruments. Despite resolving fewer (37% vs. 94%) and denser (i.e., more emissive) clouds (average cloud optical depth of 0.10 vs. 0.03, respectively), CATS data render a near‐equal estimate of the top‐of‐atmosphere (TOA) net cloud radiative forcing (CRF) versus CPL. The sample‐relative TOA net CRF solved from CPL is 1.39 W/m2, which becomes 1.32 W/m2 after normalizing by occurrence frequency. Since CATS overestimates extinction for this case, the sample‐relative TOA net forcing is ~3.0 W/m2 larger than CPL, with the absolute value reduced to within 0.3 W/m2 of CPL due its underestimation of cloud occurrence. We discuss the ramifications of thin cirrus cloud detectability from satellite and its impact on attempts at TOA CRF closure.</abstract><cop>Goddard Space Flight Center</cop><pub>Wiley</pub><doi>10.1029/2020GL088871</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3412-0794</orcidid><orcidid>https://orcid.org/0000-0003-0251-4550</orcidid><orcidid>https://orcid.org/0000-0002-4276-0708</orcidid><orcidid>https://orcid.org/0000-0001-5486-3811</orcidid><orcidid>https://orcid.org/0000-0001-6111-152X</orcidid><orcidid>https://orcid.org/0000-0003-1451-4478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-09, Vol.47 (17), p.n/a, Article 2020
issn 0094-8276
1944-8007
language eng
recordid cdi_wiley_primary_10_1029_2020GL088871_GRL60884
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; NASA Technical Reports Server; Wiley Online Library (Open Access Collection)
subjects Aerosol transport
Atmosphere
cirrus cloud
cirrus cloud detection and retrieval
Cirrus clouds
Cloud optical depth
Cloud physics
cloud radiative forcing
Clouds
Earth Resources And Remote Sensing
Geology
Geosciences, Multidisciplinary
Instruments
Lidar
Meteorological satellites
Normalizing
Optical analysis
Optical thickness
Physical Sciences
Physics
Radiative forcing
radiative transfer model
satellite lidar
Satellites
Science & Technology
Transportation systems
title Sensitivities in Satellite Lidar‐Derived Estimates of Daytime Top‐of‐the‐Atmosphere Optically Thin Cirrus Cloud Radiative Forcing: A Case Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivities%20in%20Satellite%20Lidar%E2%80%90Derived%20Estimates%20of%20Daytime%20Top%E2%80%90of%E2%80%90the%E2%80%90Atmosphere%20Optically%20Thin%20Cirrus%20Cloud%20Radiative%20Forcing:%20A%20Case%20Study&rft.jtitle=Geophysical%20research%20letters&rft.au=Dolinar,%20Erica%20K.&rft.date=2020-09-16&rft.volume=47&rft.issue=17&rft.epage=n/a&rft.artnum=2020&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL088871&rft_dat=%3Cproquest_wiley%3E2441904061%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441904061&rft_id=info:pmid/&rfr_iscdi=true