One‐Pot Synthesis of Ag‐TiO2‐rGO Nanocomposites for Visible‐Light Photodegradation
In this paper, we report a one‐pot hydrothermal method for fabricating Ag‐TiO2‐rGO nanocomposites using P25 (commercial TiO2), graphene oxide (GO), AgNO3 as raw materials, and vitamin C (VC) as the reducing agent. X‐ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microsco...
Gespeichert in:
Veröffentlicht in: | ChemistrySelect (Weinheim) 2022-03, Vol.7 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we report a one‐pot hydrothermal method for fabricating Ag‐TiO2‐rGO nanocomposites using P25 (commercial TiO2), graphene oxide (GO), AgNO3 as raw materials, and vitamin C (VC) as the reducing agent. X‐ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV‐vis diffuse reflectance spectroscopy (UV‐vis DRS) and X‐ray photoelectron spectroscopy (XPS) are utilized to characterize the phase composition, surface morphology, optical properties and chemical bonding states of the resulting nanocomposites. The nanocomposites display a porous structure, and chemical bonds such as C−O−Ti bonds are formed between TiO2 and rGO. The photocatalytic activity of the synthesized nanocomposites is evaluated using methylene blue (MB), and the GO loading content is optimized to implement the highest adsorption and photodegradation performances. Three possible excitation modes of photogenerated carriers are proposed, and possible photocatalytic mechanism of the nanocomposites under visible light is presented.
In this work, ATG nanocomposites has been synthesized via a one‐pot hydrothermal reaction and utilized for pollutant photodegradation. Based on the synergistic effect of three components, including Ag, TiO2 and rGO, there are three excitation modes of photogenerated carriers generated by visible light. Under visible light irradiation, the nanocomposites can produce active species such as the hydroxyl and superoxide radical, which play a major role in the photodegradation of pollutants. |
---|---|
ISSN: | 2365-6549 2365-6549 |
DOI: | 10.1002/slct.202200184 |