Rs-bounded H∞-calculus for sectorial operators via generalized Gaussian estimates
We show that, for negative generators of analytic semigroups, a bounded H∞‐calculus self‐improves to an Rs‐bounded H∞‐calculus in an appropriate scale of Lp‐spaces if the semigroup satisfies suitable generalized Gaussian estimates. As application of our result we obtain that large classes of differe...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2015-08, Vol.288 (11-12), p.1371-1387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, for negative generators of analytic semigroups, a bounded H∞‐calculus self‐improves to an Rs‐bounded H∞‐calculus in an appropriate scale of Lp‐spaces if the semigroup satisfies suitable generalized Gaussian estimates. As application of our result we obtain that large classes of differential operators have an Rs‐bounded H∞‐calculus. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201300132 |