Rs-bounded H∞-calculus for sectorial operators via generalized Gaussian estimates

We show that, for negative generators of analytic semigroups, a bounded H∞‐calculus self‐improves to an Rs‐bounded H∞‐calculus in an appropriate scale of Lp‐spaces if the semigroup satisfies suitable generalized Gaussian estimates. As application of our result we obtain that large classes of differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2015-08, Vol.288 (11-12), p.1371-1387
Hauptverfasser: Kunstmann, Peer Christian, Ullmann, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, for negative generators of analytic semigroups, a bounded H∞‐calculus self‐improves to an Rs‐bounded H∞‐calculus in an appropriate scale of Lp‐spaces if the semigroup satisfies suitable generalized Gaussian estimates. As application of our result we obtain that large classes of differential operators have an Rs‐bounded H∞‐calculus.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201300132