Unconditional bases in lp⊕lq, 0 < p < q < 1

We prove that every unconditional basis of lp⊕lq (0 < p < q < 1) is a disjoint union of two subsequences which span subspaces isomorphic to lp and lq respectively. This is an extension of a similar result of EDELSTEIN and WOJTASZCZYK [3] for 1 ≦ p < q

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 1981, Vol.103 (1), p.109-116
1. Verfasser: Ortynski, Augustyn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every unconditional basis of lp⊕lq (0 < p < q < 1) is a disjoint union of two subsequences which span subspaces isomorphic to lp and lq respectively. This is an extension of a similar result of EDELSTEIN and WOJTASZCZYK [3] for 1 ≦ p < q
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.19811030108