Z D P ( n ) ${Z}_{DP}(n)$ is bounded above by n 2 − ( n + 3 ) ∕ 2 ${n}^{2}-(n+3)\unicode{x02215}2
In 2018, Dvořák and Postle introduced a generalization of proper coloring, the so‐called DP‐coloring. For any graph G $G$, the DP‐chromatic number χD P( G ) ${\chi }_{DP}(G)$ of G $G$ is defined analogously with the chromatic number χ( G ) $\chi (G)$ of G $G$. In this article, we show that χD P(G ∨...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-09, Vol.104 (1), p.133-149 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2018, Dvořák and Postle introduced a generalization of proper coloring, the so‐called DP‐coloring. For any graph G $G$, the DP‐chromatic number χD
P(
G
) ${\chi }_{DP}(G)$ of G $G$ is defined analogously with the chromatic number χ(
G
) $\chi (G)$ of G $G$. In this article, we show that χD
P(G
∨
K
s)=
χ(G
∨
K
s) ${\chi }_{DP}(G\vee {K}_{s})=\chi (G\vee {K}_{s})$ holds for s
=
4(χ(
G
)+
1)|
E(
G
)|2
χ(
G
)+
1 $s=\unicode{x02308}\frac{4(\chi (G)+1)|E(G)|}{2\chi (G)+1}\unicode{x02309}$, where G
∨
K
s $G\vee {K}_{s}$ is the join of G $G$ and a complete graph with s $s$ vertices. As a result, ZD
P(
n
)≤
n
2
−(n
+
3)∕
2 ${Z}_{DP}(n)\le {n}^{2}-(n+3)\unicode{x02215}2$ holds for every integer n
≥
2 $n\ge 2$, where ZD
P(
n
) ${Z}_{DP}(n)$ is the minimum nonnegative integer s $s$ such that χD
P(G
∨
K
s)=
χ(G
∨
K
s) ${\chi }_{DP}(G\vee {K}_{s})=\chi (G\vee {K}_{s})$ holds for every graph G $G$ with n $n$ vertices. Our result improves the best current upper bound 1.5
n
2 $1.5{n}^{2}$ of ZD
P(
n
) ${Z}_{DP}(n)$ due to Bernshteyn, Kostochka, and Zhu. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22952 |