Z D P ( n ) ${Z}_{DP}(n)$ is bounded above by n 2 − ( n + 3 ) ∕ 2 ${n}^{2}-(n+3)\unicode{x02215}2

In 2018, Dvořák and Postle introduced a generalization of proper coloring, the so‐called DP‐coloring. For any graph G $G$, the DP‐chromatic number χD P( G ) ${\chi }_{DP}(G)$ of G $G$ is defined analogously with the chromatic number χ( G ) $\chi (G)$ of G $G$. In this article, we show that χD P(G ∨...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2023-09, Vol.104 (1), p.133-149
Hauptverfasser: Zhang, Meiqiao, Dong, Fengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2018, Dvořák and Postle introduced a generalization of proper coloring, the so‐called DP‐coloring. For any graph G $G$, the DP‐chromatic number χD P( G ) ${\chi }_{DP}(G)$ of G $G$ is defined analogously with the chromatic number χ( G ) $\chi (G)$ of G $G$. In this article, we show that χD P(G ∨ K s)= χ(G ∨ K s) ${\chi }_{DP}(G\vee {K}_{s})=\chi (G\vee {K}_{s})$ holds for s = 4(χ( G )+ 1)| E( G )|2 χ( G )+ 1 $s=\unicode{x02308}\frac{4(\chi (G)+1)|E(G)|}{2\chi (G)+1}\unicode{x02309}$, where G ∨ K s $G\vee {K}_{s}$ is the join of G $G$ and a complete graph with s $s$ vertices. As a result, ZD P( n )≤ n 2 −(n + 3)∕ 2 ${Z}_{DP}(n)\le {n}^{2}-(n+3)\unicode{x02215}2$ holds for every integer n ≥ 2 $n\ge 2$, where ZD P( n ) ${Z}_{DP}(n)$ is the minimum nonnegative integer s $s$ such that χD P(G ∨ K s)= χ(G ∨ K s) ${\chi }_{DP}(G\vee {K}_{s})=\chi (G\vee {K}_{s})$ holds for every graph G $G$ with n $n$ vertices. Our result improves the best current upper bound 1.5 n 2 $1.5{n}^{2}$ of ZD P( n ) ${Z}_{DP}(n)$ due to Bernshteyn, Kostochka, and Zhu.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22952