Preparation of Li2CO3 by gas-liquid reactive crystallization of LiOH and CO2

A spinning disk reactor (SDR) was used in this research to prepare Li2CO3 by gas‐liquid reactive crystallization of LiOH and CO2. It was found that the end pH value of the above reaction should be controlled within the range of 9.0‐9.5 to obtain a high yield of Li2CO3. The effects of operational par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal research and technology (1979) 2012-04, Vol.47 (4), p.437-442
Hauptverfasser: Sun, Yuzhu, Song, Xingfu, Wang, Jin, Yu, Jianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spinning disk reactor (SDR) was used in this research to prepare Li2CO3 by gas‐liquid reactive crystallization of LiOH and CO2. It was found that the end pH value of the above reaction should be controlled within the range of 9.0‐9.5 to obtain a high yield of Li2CO3. The effects of operational parameters (including the temperature, the concentration of LiOH solution, the rotation rate of the spinning disk, the circulation rate of LiOH slurry, the flow rate of CO2 and the ultrasound field) on the particle size and the yielding rate were investigated by an orthogonal experiment. The results show the significant factors influencing the particle size are the ultrasound field, the temperature and the flow rate of CO2. As for the yielding rate, the temperature, the concentration of LiOH solution and the flow rate of CO2 exert obvious impacts, while the effects of ultrasound field and the rotation rate of the spinning disk are limited. The SEM images show the Li2CO3products are flower‐like particles, which are composed of plate‐like primary crystals. The size analysis shows the volume mean particle size of the Li2CO3products ranges 37‐90 μm depending on the various experimental conditions. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0232-1300
1521-4079
DOI:10.1002/crat.201100571