L2-signatures, homology localization, and amenable groups
Aimed at geometric applications, we prove the homology cobordism invariance of the L2‐Betti numbers and L2‐signature defects associated to the class of amenable groups lying in Strebel's class D(R), which includes some interesting infinite/finite non‐torsion‐free groups. This result includes th...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2012-06, Vol.65 (6), p.790-832 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aimed at geometric applications, we prove the homology cobordism invariance of the L2‐Betti numbers and L2‐signature defects associated to the class of amenable groups lying in Strebel's class D(R), which includes some interesting infinite/finite non‐torsion‐free groups. This result includes the only prior known condition, that Γ is a poly‐torsion‐free abelian group (or a finite p‐group). We define a new commutator series that refines Harvey's torsion‐free derived series of groups, using the localizations of groups and rings of Bousfield, Vogel, and Cohn. The series, called the local derived series, has versions for homology with arbitrary coefficients and satisfies functoriality and an injectivity theorem. We combine these two new tools to give some applications to distinct homology cobordism types within the same simple homotopy type in higher dimensions, to concordance of knots in three manifolds, and to spherical space forms in dimension 3. © 2012 Wiley Periodicals, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.21393 |