Torrefied agro‐industrial residue as filler in natural rubber compounds
This study explored the feasibility of using torrefied biomass as a reinforcing filler in natural rubber compounds. Carbon black was then replaced with the torrefied biomass in elastomer formulations for concentrations varying from 0% to 100% (60 parts per hundred rubber or phr total). Their influen...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2021-07, Vol.138 (28), p.n/a, Article 50684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study explored the feasibility of using torrefied biomass as a reinforcing filler in natural rubber compounds. Carbon black was then replaced with the torrefied biomass in elastomer formulations for concentrations varying from 0% to 100% (60 parts per hundred rubber or phr total). Their influence on the curing process, dynamic properties, and mechanical properties was investigated. Results were compared with the properties of vulcanizates containing solely carbon black fillers. Time to cure (t90) for compounds with torrefied biomass fillers increased, while filler‐filler interactions (ΔG') decreased, compared to carbon black controls. At low strains, the tan δ values of the torrefied fillers vulcanizates were similar to the controls. Incorporation of torrefied biomass into natural rubber decreased compound tensile strength and modulus but increased elongation. Replacement with torrefied fillers resulted in a weaker filler network in the matrix. Still, results showed that moderate substitution concentrations (~20 phr) could be feasible for some natural rubber applications.
Interest in increasing the biobased content of rubber compounds led to the study of torrified almond shells as full or partial replacements of a petroleum‐derived carbon black filler in a natural rubber compound. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.50684 |