Direct Evidence of Local pH Change and the Role of Alkali Cation during CO2 Electroreduction in Aqueous Media
We report, for the first time, utilizing a rotating ring‐disc electrode (RRDE) assembly for detecting changes in the local pH during aqueous CO2 reduction reaction (CO2RR). Using Au as a model catalyst where CO is the only product, we show that the CO oxidation peak shifts by −86±2 mV/pH during CO2R...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2020-01, Vol.59 (4), p.1674-1681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report, for the first time, utilizing a rotating ring‐disc electrode (RRDE) assembly for detecting changes in the local pH during aqueous CO2 reduction reaction (CO2RR). Using Au as a model catalyst where CO is the only product, we show that the CO oxidation peak shifts by −86±2 mV/pH during CO2RR, which can be used to directly quantify the change in the local pH near the catalyst surface during electrolysis. We then applied this methodology to investigate the role of cations in affecting the local pH during CO2RR and find that during CO2RR to CO on Au in an MHCO3 buffer (where M is an alkali metal), the experimentally measured local basicity decreased in the order Li+ > Na+ > K+ > Cs+, which agreed with an earlier theoretical prediction by Singh et al. Our results also reveal that the formation of CO is independent of the cation. In summary, RRDE is a versatile tool for detecting local pH change over a diverse range of CO2RR catalysts. Additionally, using the product itself (i.e. CO) as the local pH probe allows us to investigate CO2RR without the interference of additional probe molecules introduced to the system. Most importantly, considering that most CO2RR products have pH‐dependent oxidation, RRDE can be a powerful tool for determining the local pH and correlating the local pH to reaction selectivity.
Local pH detection: A pH‐dependent electroactive product from the electroreduction of CO2 can be used as a molecular probe, thereby allowing in situ detection of local pH changes during CO2 electroreduction using a rotating ring disc electrode assembly. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201912637 |