MoS2 Nanosheets Uniformly Anchored on NiMoO4 Nanorods, a Highly Active Hierarchical Nanostructure Catalyst for Oxygen Evolution Reaction and Pseudo‐Capacitors

Hierarchical nanostructures have attracted considerable research attention due to their applications in the catalysis field. Herein, we design a versatile hierarchical nanostructure composed of NiMoO4 nanorods surrounded by active MoS2 nanosheets on an interconnected nickel foam substrate. The as‐pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced sustainable systems (Online) 2023-02, Vol.7 (2), p.n/a
Hauptverfasser: Solomon, Getachew, Kohan, Mojtaba Gilzad, Mazzaro, Raffaello, Jugovac, Matteo, Moras, Paolo, Morandi, Vittorio, Concina, Isabella, Vomiero, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hierarchical nanostructures have attracted considerable research attention due to their applications in the catalysis field. Herein, we design a versatile hierarchical nanostructure composed of NiMoO4 nanorods surrounded by active MoS2 nanosheets on an interconnected nickel foam substrate. The as‐prepared nanostructure exhibits excellent oxygen evolution reaction performance, producing a current density of 10 mA cm−2 at an overpotential of 90 mV, in comparison with 220 mV necessary to reach a similar current density for NiMoO4. This behavior originates from the structural/morphological properties of the MoS2 nanosheets, which present numerous surface‐active sites and allow good contact with the electrolyte. Besides, the structures can effectively store charges, due to their unique branched network providing accessible active surface area, which facilitates intermediates adsorptions. Particularly, NiMoO4/MoS2 shows a charge capacity of 358 mAhg−1 at a current of 0.5 A g−1 (230 mAhg−1 for NiMoO4), thus suggesting promising applications for charge‐storing devices. Hierarchical NiMoO4/MoS2 nanostructures acts as a best catalyst for oxygen evolution, producing a current density of 10 mA cm−2 at an overpotential of 90 mV in 1 M KOH. In addition, the structures can effectively store charges, showing a charge capacity of 358 mAhg−1 at a current of 0.5 A g−1, thus suggesting promising applications for charge‐storing devices.
ISSN:2366-7486
2366-7486
DOI:10.1002/adsu.202200410