Counterintuitive Wetting Transitions in Doubly Reentrant Cavities as a Function of Surface Make‐Up, Hydrostatic Pressure, and Cavity Aspect Ratio
Surfaces that entrap air underwater serve numerous practical applications, such as mitigating cavitation erosion and reducing frictional drag. These surfaces typically rely on perfluorinated coatings. However, the non‐biodegradability and fragility of the coatings limit practical applications. Thus,...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2020-11, Vol.7 (22), p.n/a, Article 2001268 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surfaces that entrap air underwater serve numerous practical applications, such as mitigating cavitation erosion and reducing frictional drag. These surfaces typically rely on perfluorinated coatings. However, the non‐biodegradability and fragility of the coatings limit practical applications. Thus, coating‐free, sustainable, and robust approaches are desirable. Recently, a microtexture comprising doubly reentrant cavities (DRCs) has been demonstrated to entrap air on immersion in wetting liquids. While this is a promising approach, insights into the effects of surface chemistry, hydrostatic pressure, and cavity dimensions on wetting transitions in DRCs remain unavailable. In response, Cassie‐to‐Wenzel transitions into circular DRCs submerged in water are investigated and compared with those in cylindrical “simple” cavities (SCs). It is found that at low hydrostatic pressures (≈50 Pa), DRCs with hydrophilic (θo ≈ 40°) and hydrophobic (θo ≈ 112°) make‐ups fill within 105 and 107 s, respectively, while SCs with hydrophilic make‐up fill within |
---|---|
ISSN: | 2196-7350 2196-7350 |
DOI: | 10.1002/admi.202001268 |