Nanomaterials Synthesis Methods

There are various widely known methods for producing nanomaterials: physical, chemical, and mechanical. There are also different definitions concerning manufacturing and synthesis of nanomaterials. Recently, several research groups have proposed the use of biological systems for the synthesis of nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tulinski, Maciej, Jurczyk, Mieczyslaw
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue
container_start_page 75
container_title
container_volume
creator Tulinski, Maciej
Jurczyk, Mieczyslaw
description There are various widely known methods for producing nanomaterials: physical, chemical, and mechanical. There are also different definitions concerning manufacturing and synthesis of nanomaterials. Recently, several research groups have proposed the use of biological systems for the synthesis of nanoparticles. The biological methods of nanoparticles synthesis would assist to remove ruthless processing conditions, by allowing the synthesis at physiological pH, temperature, pressure, and at the same time, at negligible cost. The physical and chemical methods are extremely pricey. Chemical methods include chemical vapor deposition, epitaxial growth, colloidal dispersion, sol‐gel, hydrothermal route, microemulsions, polymer route, and other precipitation processes. Mechanical methods include mechanical grinding, high‐energy ball milling, mechanical alloying (MA), and reactive milling. The advantages of these techniques are that they are simple, require low‐cost equipment, and, provided that a coarse feedstock powder can be made, the powder can be processed.
doi_str_mv 10.1002/9783527800308.ch4
format Book Chapter
fullrecord <record><control><sourceid>wiley</sourceid><recordid>TN_cdi_wiley_ebooks_10_1002_9783527800308_ch4_ch4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1002/9783527800308.ch4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1754-14b0bcc77c6f52865667359907c7dd54af3ddfe74acceb25c88cf69922a7c9c63</originalsourceid><addsrcrecordid>eNpVj9tKAzEQhiNSUNp9AK_sC2ydHCe5lOIJqr3QXofsJGG3rV0wC9K3d4si9GIYvv9nBj7GbjgsOIC4c2ilFmgBJNgFteqCVWfZ5T9LBdKJK1aVsoXxlo8k1TW7fQuH_jMM6asL-zJ_Px6GNpWuzF_T0PaxzNgkj0Wq_vaUbR4fPpbP9Wr99LK8X9XEUauaqwYaIkQyWQtrtDEotXOAhDFqFbKMMSdUgSg1QpO1lI1zQgQkR0ZOGf_9-93t09Gnpu93xXPwJ1F_JuVH0dPIH7cHRUs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Nanomaterials Synthesis Methods</title><source>Ebook Central Perpetual and DDA</source><creator>Tulinski, Maciej ; Jurczyk, Mieczyslaw</creator><contributor>Van de Voorde, Marcel ; Kaiser, Debra L ; Mansfield, Elisabeth ; Fujita, Daisuke</contributor><creatorcontrib>Tulinski, Maciej ; Jurczyk, Mieczyslaw ; Van de Voorde, Marcel ; Kaiser, Debra L ; Mansfield, Elisabeth ; Fujita, Daisuke</creatorcontrib><description>There are various widely known methods for producing nanomaterials: physical, chemical, and mechanical. There are also different definitions concerning manufacturing and synthesis of nanomaterials. Recently, several research groups have proposed the use of biological systems for the synthesis of nanoparticles. The biological methods of nanoparticles synthesis would assist to remove ruthless processing conditions, by allowing the synthesis at physiological pH, temperature, pressure, and at the same time, at negligible cost. The physical and chemical methods are extremely pricey. Chemical methods include chemical vapor deposition, epitaxial growth, colloidal dispersion, sol‐gel, hydrothermal route, microemulsions, polymer route, and other precipitation processes. Mechanical methods include mechanical grinding, high‐energy ball milling, mechanical alloying (MA), and reactive milling. The advantages of these techniques are that they are simple, require low‐cost equipment, and, provided that a coarse feedstock powder can be made, the powder can be processed.</description><identifier>ISBN: 9783527340392</identifier><identifier>ISBN: 3527340394</identifier><identifier>EISBN: 9783527800308</identifier><identifier>EISBN: 3527800301</identifier><identifier>DOI: 10.1002/9783527800308.ch4</identifier><language>eng</language><publisher>Weinheim, Germany: Wiley‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>biological synthesis ; chemical vapor deposition ; colloidal dispersion ; cyclic extrusion compression method ; epitaxial growth ; mechanical alloying ; mechanochemical processing ; nanomaterials synthesis ; physical vapor deposition ; pulsed laser deposition</subject><ispartof>Metrology and Standardization of Nanotechnology, 2017, p.75-98</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1754-14b0bcc77c6f52865667359907c7dd54af3ddfe74acceb25c88cf69922a7c9c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>779,780,784,793,27925</link.rule.ids></links><search><contributor>Van de Voorde, Marcel</contributor><contributor>Kaiser, Debra L</contributor><contributor>Mansfield, Elisabeth</contributor><contributor>Fujita, Daisuke</contributor><creatorcontrib>Tulinski, Maciej</creatorcontrib><creatorcontrib>Jurczyk, Mieczyslaw</creatorcontrib><title>Nanomaterials Synthesis Methods</title><title>Metrology and Standardization of Nanotechnology</title><description>There are various widely known methods for producing nanomaterials: physical, chemical, and mechanical. There are also different definitions concerning manufacturing and synthesis of nanomaterials. Recently, several research groups have proposed the use of biological systems for the synthesis of nanoparticles. The biological methods of nanoparticles synthesis would assist to remove ruthless processing conditions, by allowing the synthesis at physiological pH, temperature, pressure, and at the same time, at negligible cost. The physical and chemical methods are extremely pricey. Chemical methods include chemical vapor deposition, epitaxial growth, colloidal dispersion, sol‐gel, hydrothermal route, microemulsions, polymer route, and other precipitation processes. Mechanical methods include mechanical grinding, high‐energy ball milling, mechanical alloying (MA), and reactive milling. The advantages of these techniques are that they are simple, require low‐cost equipment, and, provided that a coarse feedstock powder can be made, the powder can be processed.</description><subject>biological synthesis</subject><subject>chemical vapor deposition</subject><subject>colloidal dispersion</subject><subject>cyclic extrusion compression method</subject><subject>epitaxial growth</subject><subject>mechanical alloying</subject><subject>mechanochemical processing</subject><subject>nanomaterials synthesis</subject><subject>physical vapor deposition</subject><subject>pulsed laser deposition</subject><isbn>9783527340392</isbn><isbn>3527340394</isbn><isbn>9783527800308</isbn><isbn>3527800301</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2017</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpVj9tKAzEQhiNSUNp9AK_sC2ydHCe5lOIJqr3QXofsJGG3rV0wC9K3d4si9GIYvv9nBj7GbjgsOIC4c2ilFmgBJNgFteqCVWfZ5T9LBdKJK1aVsoXxlo8k1TW7fQuH_jMM6asL-zJ_Px6GNpWuzF_T0PaxzNgkj0Wq_vaUbR4fPpbP9Wr99LK8X9XEUauaqwYaIkQyWQtrtDEotXOAhDFqFbKMMSdUgSg1QpO1lI1zQgQkR0ZOGf_9-93t09Gnpu93xXPwJ1F_JuVH0dPIH7cHRUs</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Tulinski, Maciej</creator><creator>Jurczyk, Mieczyslaw</creator><general>Wiley‐VCH Verlag GmbH &amp; Co. KGaA</general><scope/></search><sort><creationdate>20170215</creationdate><title>Nanomaterials Synthesis Methods</title><author>Tulinski, Maciej ; Jurczyk, Mieczyslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1754-14b0bcc77c6f52865667359907c7dd54af3ddfe74acceb25c88cf69922a7c9c63</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biological synthesis</topic><topic>chemical vapor deposition</topic><topic>colloidal dispersion</topic><topic>cyclic extrusion compression method</topic><topic>epitaxial growth</topic><topic>mechanical alloying</topic><topic>mechanochemical processing</topic><topic>nanomaterials synthesis</topic><topic>physical vapor deposition</topic><topic>pulsed laser deposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Tulinski, Maciej</creatorcontrib><creatorcontrib>Jurczyk, Mieczyslaw</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tulinski, Maciej</au><au>Jurczyk, Mieczyslaw</au><au>Van de Voorde, Marcel</au><au>Kaiser, Debra L</au><au>Mansfield, Elisabeth</au><au>Fujita, Daisuke</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Nanomaterials Synthesis Methods</atitle><btitle>Metrology and Standardization of Nanotechnology</btitle><date>2017-02-15</date><risdate>2017</risdate><spage>75</spage><epage>98</epage><pages>75-98</pages><isbn>9783527340392</isbn><isbn>3527340394</isbn><eisbn>9783527800308</eisbn><eisbn>3527800301</eisbn><abstract>There are various widely known methods for producing nanomaterials: physical, chemical, and mechanical. There are also different definitions concerning manufacturing and synthesis of nanomaterials. Recently, several research groups have proposed the use of biological systems for the synthesis of nanoparticles. The biological methods of nanoparticles synthesis would assist to remove ruthless processing conditions, by allowing the synthesis at physiological pH, temperature, pressure, and at the same time, at negligible cost. The physical and chemical methods are extremely pricey. Chemical methods include chemical vapor deposition, epitaxial growth, colloidal dispersion, sol‐gel, hydrothermal route, microemulsions, polymer route, and other precipitation processes. Mechanical methods include mechanical grinding, high‐energy ball milling, mechanical alloying (MA), and reactive milling. The advantages of these techniques are that they are simple, require low‐cost equipment, and, provided that a coarse feedstock powder can be made, the powder can be processed.</abstract><cop>Weinheim, Germany</cop><pub>Wiley‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/9783527800308.ch4</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9783527340392
ispartof Metrology and Standardization of Nanotechnology, 2017, p.75-98
issn
language eng
recordid cdi_wiley_ebooks_10_1002_9783527800308_ch4_ch4
source Ebook Central Perpetual and DDA
subjects biological synthesis
chemical vapor deposition
colloidal dispersion
cyclic extrusion compression method
epitaxial growth
mechanical alloying
mechanochemical processing
nanomaterials synthesis
physical vapor deposition
pulsed laser deposition
title Nanomaterials Synthesis Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Nanomaterials%20Synthesis%20Methods&rft.btitle=Metrology%20and%20Standardization%20of%20Nanotechnology&rft.au=Tulinski,%20Maciej&rft.date=2017-02-15&rft.spage=75&rft.epage=98&rft.pages=75-98&rft.isbn=9783527340392&rft.isbn_list=3527340394&rft_id=info:doi/10.1002/9783527800308.ch4&rft_dat=%3Cwiley%3E10.1002/9783527800308.ch4%3C/wiley%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783527800308&rft.eisbn_list=3527800301&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true