Measure Spaces

Every measure μ in an algebra A possesses the following properties: monotonicity, strong additivity, continuity from below and continuity from above. This chapter defines a measure space and introduces the notions of upper and lower limits of sequences of sets similar to those for real number sequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mackevičius, Vigirdas
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Every measure μ in an algebra A possesses the following properties: monotonicity, strong additivity, continuity from below and continuity from above. This chapter defines a measure space and introduces the notions of upper and lower limits of sequences of sets similar to those for real number sequences. A series of problems to be solved are provided.
DOI:10.1002/9781119037514.ch13