Sensitivity Advantage of QCL Tunable-Laser Mid-Infrared Spectroscopy over FTIR Spectroscopy

Interest in mid-infrared spectroscopy instrumentation beyond classical FTIR using a thermal light source has increased dramatically in recent years. Synchrotron, supercontinuum, and external-cavity quantum cascade laser light sources are emerging as viable alternatives to the traditional thermal bla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Childs, D.T.D, Hogg, R.A, Revin, D.G, Rehman, I.U, Cockburn, J.W, Matcher, S.J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interest in mid-infrared spectroscopy instrumentation beyond classical FTIR using a thermal light source has increased dramatically in recent years. Synchrotron, supercontinuum, and external-cavity quantum cascade laser light sources are emerging as viable alternatives to the traditional thermal black-body emitter (Globar), especially for remote interrogation of samples ("stand-off" detection) and for hyperspectral imaging at diffraction-limited spatial resolution ("microspectroscopy"). It is thus timely to rigorously consider the relative merits of these different light sources for such applications. We study the theoretical maximum achievable signal-to-noise ratio (SNR) of FTIR using synchrotron or supercontinuum light vs. that of a tunable quantum cascade laser, by reinterpreting an important result that is well known in near-infrared optical coherence tomography imaging. We rigorously show that mid-infrared spectra can be acquired up to 1000 times faster - using the same detected light intensity, the same detector noise level, and without loss of SNR - using the tunable quantum cascade laser as compared with the FTIR approach using synchrotron or supercontinuum light. We experimentally demonstrate the effect using a novel, rapidly tunable quantum cascade laser that acquires spectra at rates of up to 400 per second. We also estimate the maximum potential spectral acquisition rate of our prototype system to be 100,000 per second.
DOI:10.1080/05704928.2015.1075208