Three-dimensional imaging and uptake of the anticancer drug combretastatin in cell spheroids and photoisomerization in gels with multiphoton excitation

The uptake of E-combretastatins, potential prodrugs of the anticancer Z-isomers, into multicellular spheroids has been imaged by intrinsic fluorescence in three dimensions using two-photon excited fluorescence lifetime imaging with 625-nm ultrafast femtosecond laser pulses. Uptake is initially obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Scherer, K.M, Bisby, R.H, Botchway, S.W, Hadfield, J.A, Haycock, J.W, Parker, A.W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The uptake of E-combretastatins, potential prodrugs of the anticancer Z-isomers, into multicellular spheroids has been imaged by intrinsic fluorescence in three dimensions using two-photon excited fluorescence lifetime imaging with 625-nm ultrafast femtosecond laser pulses. Uptake is initially observed at the spheroid periphery but extends to the spheroid core within 30 min. Using agarose gels as a three-dimensional model, the conversion of Z(trans)→E(cis) via two-photon photoisomerization is demonstrated and the location of this photochemical process may be precisely selected within the micron scale in all three dimensions at depths up to almost 2 mm. We discuss these results for enhanced tissue penetration at longer near-infrared wavelengths for cancer therapy and up to three-photon excitation and imaging using 930-nm laser pulses with suitable combretastatin analogs.
DOI:10.1117/1.JBO.20.7.078003