Learning by observation through system identification
In our previous works, we present a new method to program mobile robots —“code identification by demonstration”— based on algorithmically transferring human behaviours to robot control code using transparent mathematical functions. Our approach has three stages: i) first extracting the trajectory of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In our previous works, we present a new method
to program mobile robots —“code identification by
demonstration”— based on algorithmically transferring
human behaviours to robot control code using
transparent mathematical functions. Our approach
has three stages: i) first extracting the trajectory of the
desired behaviour by observing the human, ii) making
the robot follow the human trajectory blindly to
log the robot’s own perception perceived along that
trajectory, and finally iii) linking the robot’s perception
to the desired behaviour to obtain a generalised,
sensor-based model.
So far we used an external, camera based motion
tracking system to log the trajectory of the human
demonstrator during his initial demonstration of the
desired motion. Because such tracking systems are
complicated to set up and expensive, we propose an alternative method to obtain trajectory information, using the robot’s own sensor perception.
In this method, we train a mathematical polynomial using the NARMAX system identification methodology which maps the position of the “red jacket” worn by the demonstrator in the image captured by the robot’s camera, to the relative position of the demonstrator in the real world according to the robot.
We demonstrate the viability of this approach by teaching a Scitos G5 mobile robot to achieve door traversal behaviour. |
---|