Cutting Barnette graphs perfectly is hard
A perfect matching cut is a perfect matching that is also a cutset, or equivalently, a perfect matching containing an even number of edges on every cycle. The corresponding algorithmic problem, Perfect Matching Cut, is known to be NP-complete in subcubic bipartite graphs [Le & Telle, TCS '2...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A perfect matching cut is a perfect matching that is also a cutset, or equivalently, a perfect matching containing an even number of edges on every cycle. The corresponding algorithmic problem, Perfect Matching Cut, is known to be NP-complete in subcubic bipartite graphs [Le & Telle, TCS '22], but its complexity was open in planar graphs and cubic graphs. We settle both questions simultaneously by showing that Perfect Matching Cut is NP-complete in 3-connected cubic bipartite planar graphs or Barnette graphs. Prior to our work, among problems whose input is solely an undirected graph, only Distance-2 4-Coloring was known to be NP-complete in Barnette graphs. Notably, Hamiltonian Cycle would only join this private club if Barnette's conjecture were refuted. |
---|---|
DOI: | 10.1016/j.tcs.2024.114701 |