Sildenafil Counteracts the In Vitro Activation of CXCL-9, CXCL-10 and CXCL-11/CXCR3 Axis Induced by Reactive Oxygen Species in Scleroderma Fibroblasts

Oxidative stress plays a key role in systemic sclerosis (SSc) pathogenesis, and an altered redox homeostasis might be responsible for abnormal inflammatory status, fibrosis and tissue damage extension. In this study, we explored the effect of the phosphodiesterase type 5 inhibitor sildenafil in modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Antinozzi, C, Sgrò, P, Marampon, F, Caporossi, D, Del Galdo, F, Dimauro, I, Di Luigi, L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxidative stress plays a key role in systemic sclerosis (SSc) pathogenesis, and an altered redox homeostasis might be responsible for abnormal inflammatory status, fibrosis and tissue damage extension. In this study, we explored the effect of the phosphodiesterase type 5 inhibitor sildenafil in modulating the activation of the CXCL-9, -10, -11/CXCR3 axis, which is fundamental in the perpetuation of inflammation in different autoimmune diseases, in the cell culture of SSc human dermal fibroblasts exposed to a pro-oxidant environment. We observed that sildenafil significantly reduced gene expression and release of CXCL-9, -10 and -11, inhibited the CXCR3 action and suppressed the activation of STAT1-, JNK- and p38MAPK pathways. This in vitro study on dermal fibroblasts supports clinical studies to consider the efficacy of sildenafil in preventing tissue damage and fibrosis in SSc by targeting central biomarkers of disease progression, vascular injuries and fibrosis and reducing the pro-inflammatory activation induced by oxidative stress.
DOI:10.3390/biology10060491