Constructing Relative Effect Priors for Research Prioritization and Trial Design:A Meta-epidemiological Analysis
Background Bayesian methods have potential for efficient design of randomized clinical trials (RCTs) by incorporating existing evidence. Furthermore, value of information (VOI) methods estimate the value of reducing decision uncertainty, aiding transparent research prioritization. These methods requ...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Bayesian methods have potential for efficient design of randomized clinical trials (RCTs) by incorporating existing evidence. Furthermore, value of information (VOI) methods estimate the value of reducing decision uncertainty, aiding transparent research prioritization. These methods require a prior distribution describing current uncertainty in key parameters, such as relative treatment effect (RTE). However, at the time of designing and commissioning research, there may be no data to base the prior on. The aim of this article is to present methods to construct priors for RTEs based on a collection of previous RCTs. Methods We developed 2 Bayesian hierarchical models that captured variability in RTE between studies within disease area accounting for study characteristics. We illustrate the methods using a data set of 743 published RCTs across 9 disease areas to obtain predictive distributions for RTEs for a range of disease areas. We illustrate how the priors from such an analysis can be used in a VOI analysis for an RCT in bladder cancer and compare the results with those using an uninformative prior. Results For most disease areas, the predicted RTE favored new interventions over comparators. The predicted effects and uncertainty differed across the 9 disease areas. VOI analysis showed that the expected value of research is much lower with our empirically derived prior compared with an uninformative prior. Conclusions This study demonstrates a novel approach to generating informative priors that can be used to aid research prioritization and trial design. The methods can also be used to combine RCT evidence with expert opinion. Further work is needed to create a rich database of RCT evidence that can be used to form off-the-shelf priors. |
---|---|
DOI: | 10.1177/0272989X231165985 |