Counting Weighted Independent Sets beyond the Permanent
Jerrum, Sinclair, and Vigoda [J. ACM, 51 (2004), pp. 671--697] showed that the permanent of any square matrix can be estimated in polynomial time. This computation can be viewed as approximating the partition function of edge-weighted matchings in a bipartite graph. Equivalently, this may be viewed...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Jerrum, Sinclair, and Vigoda [J. ACM, 51 (2004), pp. 671--697] showed that the permanent of any square matrix can be estimated in polynomial time. This computation can be viewed as approximating the partition function of edge-weighted matchings in a bipartite graph. Equivalently, this may be viewed as approximating the partition function of vertex-weighted independent sets in the line graph of a bipartite graph. Line graphs of bipartite graphs are perfect graphs and are known to be precisely the class of (claw, diamond, odd hole)-free graphs. So how far does the result of Jerrum, Sinclair, and Vigoda extend? We first show that it extends to (claw, odd hole)-free graphs, and then show that it extends to the even larger class of (fork, odd hole)-free graphs. Our techniques are based on graph decompositions, which have been the focus of much recent work in structural graph theory, and on structural results of Chvátal and Sbihi [J. Combin. Theory Ser. B, 44 (1988)], Maffray and Reed [J. Combin. Theory Ser. B, 75 (1999)], and Lozin and Milanič [J. Discrete Algorithms, 6 (2008), pp. 595--604]. |
---|---|
DOI: | 10.1137/20M1347747 |