Left ventricular blood flow kinetic energy is associated with the six-minute walk test and left ventricular remodelling post valvular intervention in aortic stenosis

Background: Left ventricular (LV) kinetic energy (KE) assessment by four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) may offer incremental value over routine assessment in aortic stenosis (AS). The main objective of this study is to investigate the LV KE in patients with AS befo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elhawaz, A, Archer, G, Zafar, H, Fidock, B, Barker, N, Jones, R, Rothman, A, Hose, R, Al-Mohammad, A, Briffa, N, Hunter, S, Braidley, P, Hall, I.R, Grech, E, van der Geest, R.J, Gunn, J, Swift, A.J, Wild, J.M, Garg, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Left ventricular (LV) kinetic energy (KE) assessment by four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) may offer incremental value over routine assessment in aortic stenosis (AS). The main objective of this study is to investigate the LV KE in patients with AS before and after the valve intervention. In addition, this study aimed to investigate if LV KE offers incremental value for its association to the six-minute walk test (6MWT) or LV remodelling post-intervention. Methods: We recruited 18 patients with severe AS. All patients underwent transthoracic echocardiography for mean pressure gradient (mPG), CMR including 4D flow and 6MWT. Patients were invited for post-valve intervention follow-up CMR at 3 months and twelve patients returned for follow-up CMR. KE assessment of LV blood flow and the components (direct, delayed, retained and residual) were carried out for all cases. LV KE parameters were normalised to LV end-diastolic volume (LVEDV). Results: For LV blood flow KE assessment, the metrics including time delay (TD) for peak E-wave from base to mid-ventricle (14±48 vs. 2.5±9.75 ms, P=0.04), direct (4.91±5.07 vs. 1.86±1.72 µJ, P=0.01) and delayed (2.46±3.13 vs. 1.38±1.15 µJ, P=0.03) components of LV blood flow demonstrated a significant change between pre- and post-valve intervention. Only LV KEiEDV (r=−0.53, P
DOI:10.21037/qims-20-586