Microstructural control and optimization of Haynes 282 manufactured through laser powder bed fusion
The microstructure and properties of alloy Haynes 282 produced through laser powder bed fusion were investigated as a function of the post-deposition heat-treatment. Scanning electron microscopy and X-ray diffraction were utilized to characterize the microstructure, whilst electro-thermal mechanical...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructure and properties of alloy Haynes 282 produced through laser powder bed fusion were investigated as a function of the post-deposition heat-treatment. Scanning electron microscopy and X-ray diffraction were utilized to characterize the microstructure, whilst electro-thermal mechanical testing was used to evaluate the tensile and creep properties at 900 °C. In the as-deposited state, the initial microstructure consisted of the γ and γʹ phases along with M6C and M23C6 carbides. These carbides were observed to govern the recrystallization behaviour of the material and resulted in a minimum recrystallization temperature of 1240 °C. Following post-deposition heat-treatments, the microstructures consisted of a monomodal distribution of γʹ with M6C and M23C6 carbides along the grain boundaries. Tertiary γʹ particles were found to form in the vicinity of carbides in samples that employed a γʹ super-solvus step prior to ageing at 788 °C. The tensile properties were found to be similar in all heat-treated states, consistent with the minimal differences observed in the microstructures. In contrast, significant differences in the creep behaviour of the alloy were observed following the different heat-treatments, although no correlation with the microstructures was observed. |
---|---|
DOI: | 10.1007/978-3-030-51834-9_99 |