Solution of Dual Fuzzy Equations Using a New Iterative Method
In this paper, a new hybrid scheme based on learning algorithm of fuzzy neural network (FNN) is offered in order to extract the approximate solution of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper is a five-layer feed-back FNN with the identity activation function. The input-output re...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new hybrid scheme based on learning algorithm of fuzzy neural network (FNN) is offered in order to extract the approximate solution of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper is a five-layer feed-back FNN with the identity activation function. The input-output relation of each unit is defined by the extension principle of Zadeh. The output from this neural network, which is also a fuzzy number, is numerically compared with the target output. The comparison of the feed-back FNN method with the feed-forward FNN method shows that the less error is observed in the feed-back FNN method. An example based on applications are given to illustrate the concepts, which are discussed in this paper. |
---|---|
DOI: | 10.1007/978-3-319-75420-8_23 |