A novel technique for solving fully fuzzy nonlinear systems based on neural networks

Predicting the solutions of complex systems is a crucial challenge. Complexity exists because of the uncertainty as well as nonlinearity. The nonlinearity in complex systems makes uncertainty irreducible in several cases. In this paper, two new approaches based on neural networks are proposed in ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jafari, R, Razvarz, S, Gegov, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Predicting the solutions of complex systems is a crucial challenge. Complexity exists because of the uncertainty as well as nonlinearity. The nonlinearity in complex systems makes uncertainty irreducible in several cases. In this paper, two new approaches based on neural networks are proposed in order to find the estimated solutions of the fully fuzzy nonlinear system (FFNS). For obtaining the estimated solutions, a gradient descent algorithm is proposed in order to train the proposed networks. An example is proposed in order to show the efficiency of the considered approaches.
DOI:10.1142/S2196888820500050