Immature gannets follow adults in commuting flocks providing a potential mechanism for social learning

Group travel is a familiar phenomenon among birds but the causes of this mode of movement are often unclear. For example, flocking flight may reduce flight costs, enhance predator avoidance or increase foraging efficiency. In addition, naive individuals may also follow older, more experienced conspe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wakefield, ED, Furness, RW, Lane, JV, Jeglinski, JWE, Pinder, SJ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Group travel is a familiar phenomenon among birds but the causes of this mode of movement are often unclear. For example, flocking flight may reduce flight costs, enhance predator avoidance or increase foraging efficiency. In addition, naive individuals may also follow older, more experienced conspecifics as a learning strategy. However, younger birds may be slower than adults so biomechanical and social effects on flock structure may be difficult to separate. Gannets are wide‐ranging (100s–1000s km) colonial seabirds that often travel in V or echelon‐shaped flocks. Tracking suggests that breeding gannets use memory to return repeatedly to prey patches 10s–100s km wide but it is unclear how these are initially discovered. Public information gained at the colony or by following conspecifics has been hypothesised to play a role, especially during early life. Here, we address two hypotheses: 1) flocking reduces flight costs and 2) young gannets follow older ones in order to locate prey. To do so, we recorded flocks of northern gannets commuting to and from a large colony and passing locations offshore and used a biomechanical model to test for age differences in flight speeds. Consistent with the aerodynamic hypothesis, returning flocks were significantly larger than departing flocks, while, consistent with the information gathering hypothesis, immatures travelled in flocks more frequently than adults and these flocks were more likely to be led by adults than expected by chance. Immatures did not systematically occupy the last position in flocks and had similar theoretical airspeeds to adults, making it unlikely that they follow, rather than lead, for biomechanical reasons. We therefore conclude that while gannets are likely to travel in flocks in part to reduce flight costs, the positions of immatures in those flocks may result in a flow of information from adults to immatures, potentially leading to social learning.
DOI:10.1111/jav.02164