Extending estimation of the critical deposition velocity in solid–liquid pipe flow to ideal and non-ideal particles at low and intermediate solid volume fractions
The critical deposition velocity in horizontal pipe flow of liquid-solid slurries separates bed-forming and fully suspended flows. A compilation of critical deposition velocity data is presented using new experimental data (for particles ranging from 9 to 690 µm in diameter) along with data from the...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The critical deposition velocity in horizontal pipe flow of liquid-solid slurries separates bed-forming and fully suspended flows. A compilation of critical deposition velocity data is presented using new experimental data (for particles ranging from 9 to 690 µm in diameter) along with data from the literature, and a close correlation between the particle Reynolds number and the Archimedes number (which describe the properties of the flow and the liquid and solid phases) is found. The role of solid particle packing is discussed and suggestions are made for the incorporation of solid-phase material properties – specifically particle shape and angularity, and surface forces – into an empirical parameter, the volume factor, α, to account for the deviation of particle behaviour from ideal, non-interacting, hard-sphere behaviour. |
---|---|
DOI: | 10.1016/j.ces.2019.115308 |