Chemical and electronic structure analysis of a SrTiO3(001)/p-Ge (001) hydrogen evolution photocathode
Germanium is a small-gap semiconductor that efficiently absorbs visible light, resulting in photoexcited electrons predicted to be sufficiently energetic to reduce H 2 O for H 2 gas evolution. In order to protect the surface from corrosion and prevent surface charge recombination in contact with aqu...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Germanium is a small-gap semiconductor that efficiently absorbs visible light, resulting in photoexcited electrons predicted to be sufficiently energetic to reduce H 2 O for H 2 gas evolution. In order to protect the surface from corrosion and prevent surface charge recombination in contact with aqueous pH 7 electrolyte, we grew epitaxial SrTiO 3 layers of different thicknesses on p-Ge (001) surfaces. Four-nanometer SrTiO 3 allows photogenerated electrons to reach the surface and evolve H 2 gas, while 13 nm SrTiO 3 blocks these electrons. Ambient pressure x-ray photoelectron spectroscopy indicates that the surface readily dissociates H 2 O to form OH species, which may impact surface band bending. |
---|---|
DOI: | 10.1557/mrc.2018.38 |