On-Chip Andreev Devices: Hard Superconducting Gap and Quantum Transport in Ballistic Nb-In0.75 Ga0.25 As-Quantum-Well-Nb Josephson Junctions
A superconducting hard gap in hybrid superconductor-semiconductor devices has been found to be necessary to access topological superconductivity that hosts Majorana modes (non-Abelian excitation). This requires the formation of homogeneous and barrier-free interfaces between the superconductor and s...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A superconducting hard gap in hybrid superconductor-semiconductor devices has been found to be necessary to access topological superconductivity that hosts Majorana modes (non-Abelian excitation). This requires the formation of homogeneous and barrier-free interfaces between the superconductor and semiconductor. Here, a new platform is reported for topological superconductivity based on hybrid Nb-In0.75 Ga0.25 As-quantum-well-Nb that results in hard superconducting gap detection in symmetric, planar, and ballistic Josephson junctions. It is shown that with careful etching, sputtered Nb films can make high-quality and transparent contacts to the In0.75 Ga0.25 As quantum well, and the differential resistance and critical current measurements of these devices are discussed as a function of temperature and magnetic field. It is demonstrated that proximity-induced superconductivity in the In0.75 Ga0.25 As-quantum-well 2D electron gas results in the detection of a hard gap in four out of seven junctions on a chip with critical current values of up to 0.2 µA and transmission probabilities of >0.96. The results, together with the large g-factor and Rashba spin-orbit coupling in In0.75 Ga0.25 As quantum wells, which indeed can be tuned by the indium composition, suggest that the Nb-In0.75 Ga0.25 As-Nb system can be an excellent candidate to achieve topological phase and to realize hybrid topological superconducting devices. |
---|---|
DOI: | 10.1002/adma.201701836 |