A qualitative approach for online activity recognition

We present a novel qualitative, dynamic length sliding window method which enables a mobile robot to temporally segment activities taking place in live RGB-D video. We demonstrate how activities can be learned from observations by encoding qualitative spatio-temporal relationships between entities i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alomari, M, Duckworth, P, Gatsoulis, Y, Hogg, DC, Cohn, AG
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel qualitative, dynamic length sliding window method which enables a mobile robot to temporally segment activities taking place in live RGB-D video. We demonstrate how activities can be learned from observations by encoding qualitative spatio-temporal relationships between entities in the scene. We also show how a Nearest Neighbour model can recognise activities taking place even if they temporally co-occur. Our system is validated on a challenging dataset of daily living activities.
DOI:10.1142/9789813149137_0086