Fractional random walk lattice dynamics
We analyze time-discrete and time-continuous 'fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in n = 1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze time-discrete and time-continuous 'fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in n = 1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices ${{L}^{\frac{\alpha}{2}}}$ where $\alpha =2$ recovers the normal walk. First we demonstrate that the interval $0 |
---|---|
DOI: | 10.1088/1751-8121/aa5173 |