Fractional random walk lattice dynamics

We analyze time-discrete and time-continuous 'fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Michelitsch, T.M, Collet, B.A, Riascos, A.P, Nowakowski, A.F, Nicolleau, F.C.G.A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze time-discrete and time-continuous 'fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices ${{L}^{\frac{\alpha}{2}}}$ where $\alpha =2$ recovers the normal walk. First we demonstrate that the interval $0
DOI:10.1088/1751-8121/aa5173