Validation of 2D shock capturing flood models around a surcharging manhole

This work offers a detailed validation of finite volume (FV) flood models in the case where horizontal floodplain flow is affected by sewer surcharge flow via a manhole. The FV numerical solution of the 2D shallow water equations is considered based on two approximate Riemann solvers, HLLC and Roe,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martins, R, Kesserwani, G, Rubinato, M, Lee, S, Leandro, J, Djordjevic, S, Shucksmith, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work offers a detailed validation of finite volume (FV) flood models in the case where horizontal floodplain flow is affected by sewer surcharge flow via a manhole. The FV numerical solution of the 2D shallow water equations is considered based on two approximate Riemann solvers, HLLC and Roe, on both quadrilateral structured and triangular unstructured mesh-types. The models are validated against a high resolution experimental data-set obtained using a physical model of a sewer system linked to a floodplain via a manhole. It was verified that the sensitivity of the models is inversely proportional to the surcharged flow/surface inflow ratio, and therefore requires more calibration from the user especially when concerned with localised modelling of sewer-to-floodplain flow. Our findings provide novel evidence that shock capturing FV-based flood models are applicable to simulate localised sewer-to-floodplain flow interaction.
DOI:10.1080/1573062X.2017.1279193