Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model

The inversion of snow parameters from passive microwave remote sensing measurements is performed with a neural network trained with a dense-media multiple-scattering model. The input-output pairs generated by the scattering model are used to train the neural network. Simultaneous inversion of three...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 1992-09, Vol.30 (5), p.1015-1024
Hauptverfasser: Tsang, L., Chen, Z., Oh, S., Marks, R.J., Chang, A.T.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inversion of snow parameters from passive microwave remote sensing measurements is performed with a neural network trained with a dense-media multiple-scattering model. The input-output pairs generated by the scattering model are used to train the neural network. Simultaneous inversion of three parameters, mean-grain size of ice particles in snow, snow density, and snow temperature from five brightness temperatures, is reported. It is shown that the neural network gives good results for simulated data. The absolute percentage errors for mean-grain size of ice particles and snow density are less than 10%, and the absolute error for snow temperature is less than 3 K. The neural network with the trained weighting coefficients of the three-parameter model is also used to invert SSMI data taken over the Antarctic region.< >
ISSN:0196-2892
1558-0644
DOI:10.1109/36.175336