MAPPING OF NEURAL NITRIC-OXIDE SYNTHASE IN THE RAT SUGGESTS FREQUENT COLOCALIZATION WITH NADPH DIAPHORASE BUT NOT WITH SOLUBLE GUANYLYL CYCLASE, AND NOVEL PARANEURAL FUNCTIONS FOR NITRINERGIC SIGNAL TRANSDUCTION
Nitric oxide synthases (NOS Types I-III) generate nitric oxide (NO), which in turn activates soluble guanylyl cyclase (GC-S). The distribution of this NO-mediated (nitrinergic) signal transduction pathway in the body is unclear. A polyclonal monospecific antibody to rat cerebellum NOS-I and a monocl...
Gespeichert in:
Veröffentlicht in: | The journal of histochemistry and cytochemistry 1992-10, Vol.40 (10), p.1439-1456 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nitric oxide synthases (NOS Types I-III) generate nitric oxide (NO), which in turn activates soluble guanylyl cyclase (GC-S). The distribution of this NO-mediated (nitrinergic) signal transduction pathway in the body is unclear. A polyclonal monospecific antibody to rat cerebellum NOS-I and a monoclonal antibody to rat lung, GC-S were employed to localize the protein components of this pathway in different rat organs and tissues. We confirmed the localization of NOS-I in neurons of the central and peripheral nervous system, where NO may regulate cerebral blood flow and mediate long-term potentiation. GC-S was located in NOS-negative neurons, indicating that NO acts as an intercellular signal molecule or neurotransmitter. However, NOS-I was not confined to neurons but was widely distributed over several non-neural cell types and tissues. These included glia cells, macula densa of kidney, epithelial cells of lung, uterus, and stomach, and islets of Langerhans. Our findings suggest that NOS-I is the most widely distributed isoform of NOS and, in addition to its neural functions, regulates secretion and non-vascular smooth muscle function. With the exception of bone tissue, NADPH-diaphorase (NADPH-d) activity was generally co-localized with NOS-I immunoreactivity in both neural and non-neural cells, and is a suitable histochemical marker for NOS-I but not a selective neuronal marker. |
---|---|
ISSN: | 0022-1554 |
DOI: | 10.1177/40.10.1382087 |