Architectural design of the human intrinsic hand muscles
The architectural features of twenty different muscles (18 intrinsics and 2 thumb extrinsics, n = 180 total muscles) were studied. Muscle length, mass, fiber pennation angle, fiber length, and sarcomere length were determined. From these values, physiologic cross-sectional area and fiber length/musc...
Gespeichert in:
Veröffentlicht in: | The Journal of hand surgery (American ed.) 1992-09, Vol.17 (5), p.804-809 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The architectural features of twenty different muscles (18 intrinsics and 2 thumb extrinsics,
n = 180 total muscles) were studied. Muscle length, mass, fiber pennation angle, fiber length, and sarcomere length were determined. From these values, physiologic cross-sectional area and fiber length/muscle length ratio were calculated. Intrinsic muscle lengths were relatively similar to one another, which we interpreted as representing a space constraint within the hand. However, several specialized architectural designs were observed: lumbrical muscles had an extremely high fiber length/muscle length ratio, implying a design toward high excursion. The first dorsal interosseous and adductor pollicis had physiologic cross-sectional areas comparable to those of extrinsic muscles and much greater than those of the other intrinsic muscles. The interosseous muscles had relatively high physiologic cross-sectional areas with low fiber length/muscle length ratios, suggesting their adaptation for high force production and low excursion. Taken together, these observations illustrate the underlying structural basis for the functional capacities of the intrinsic muscles. |
---|---|
ISSN: | 0363-5023 1531-6564 |
DOI: | 10.1016/0363-5023(92)90446-V |