Early midzonal oxidative stress preceding cell death in hypoperfused rat liver

Intralobular heterogeneity of oxidative stress and its topographic relationship with cell death during low-flow hypoxia were shown in perfused rat liver by digital microfluorography using dichlorofluorescin diacetate, a fluorochrome sensitive to intracellular hydroperoxide formation, and propidium i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 1992-09, Vol.103 (3), p.994-1001
Hauptverfasser: Suematsu, Makoto, Suzuki, Hidekazu, Ishii, Hiromasa, Kato, Shinzo, Yanagisawa, Tohru, Asako, Hiroshi, Suzuki, Masayuki, Tsuchiya, Masaharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intralobular heterogeneity of oxidative stress and its topographic relationship with cell death during low-flow hypoxia were shown in perfused rat liver by digital microfluorography using dichlorofluorescin diacetate, a fluorochrome sensitive to intracellular hydroperoxide formation, and propidium iodide, which labels the nuclei of nonviable cells. The surface of the liver loaded with two precursors was microscopically visualized, and the fluorescence of dichlorofluorescein, a highly fluorescent molecule generated by hydroperoxide-mediated dichlorofluorescin oxidation, was digitally processed. Dichlorofluorescein fluorescence significantly increased in midzonal regions as early as 20 minutes after starting the 25% low-flow hypoxia. At 40 minutes the fluorograph showed multiple dotted patterns, and the intensity peaked at 60 minutes. The onset of cell death studied by propidium iodide was observed at 40 minutes, and its topographic distribution corresponded to the dichlorofluorescein-enhanced midzonal regions. Allopurinol diminished the early midzonal oxidative stress and retarded the onset of cell death. The current findings show that xanthine oxidase-dependent oxidative stress and the resultant cell death during low-flow hypoxia are spatially restricted in the intermediate zone between the periportal and pericentral regions.
ISSN:0016-5085
1528-0012
DOI:10.1016/0016-5085(92)90034-V