MOLECULAR PHYSIOLOGY OF THE REGULATION OF HEPATIC GLUCONEOGENESIS AND GLYCOLYSIS

Understanding the regulation of hepatic glucose metabolism had its foundation in the elucidation of several pathways, but recent advances have come from the application of molecular genetics. Five years ago little was known about the primary structure of the key regulatory enzymes. Since then, the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of physiology 1992-01, Vol.54 (1), p.885-909
Hauptverfasser: PILKIS, SJ, GRANNER, DK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the regulation of hepatic glucose metabolism had its foundation in the elucidation of several pathways, but recent advances have come from the application of molecular genetics. Five years ago little was known about the primary structure of the key regulatory enzymes. Since then, the primary sequence of liver GK, 6-PF-1-K, Fru-1,6-P2ase, PK, PEPCK, and 6-PF-2-K/Fru-2,6-P2ase have been derived from cDNA sequences and/or determined by direct protein sequencing. This has provided new insights into the molecular mechanisms of catalysis and the regulation of these enzymes by covalent modification. Isolation of the cDNAs for these enzymes also has allowed for the quantitation of specific mRNAs and permitted analysis of hormonal control of specific gene expression. The genes for these enzymes have been isolated and sequenced, and their promoter regions are being identified and characterized. Hormone response elements have been delineated in several of the promoters. The promoter regions for 6-PF-2-K/Fru-2,6-P2ase and Fru-1,6-P2ase have also been identified, and future research will focus on the elucidation of the mechanisms whereby hormones regulate the expression of these genes. A number of generalizations can be made about the regulation of gene expression of glycolytic/gluconeogenic enzymes. First, there is coordinate hormonal regulation of gene expression and these effects are consonant with their physiologic actions. Insulin induces the mRNAs that encode glycolytic enzymes and represses the mRNAs that encode gluconeogenic enzymes; cAMP has opposite effects. Both can increase or decrease transcription. Whereas insulin and cAMP affect all of these mRNAs, glucocorticoids appear to have a more restricted action. Second, transcriptional and posttranscriptional regulatory mechanisms are involved. The synthesis of all of the mRNAs discussed is regulated by hormones. Relatively little is known about how mRNA stability is regulated in general, but it is clear that PEPCK mRNA is stabilized by agents that increase the rate of transcription of the gene. Under appropriate metabolic signals this dual control of mRNA synthesis and stability provides for a long-term increase in PEPCK mRNA and protein. Studies with PK mRNA are less direct, but suggest a similar dual mechanism. It will be interesting to see whether multilevel regulation is restricted to these two mRNAs, both of which are involved in the same substrate cycle, or whether the stability of other mRN
ISSN:0066-4278
1545-1585
DOI:10.1146/annurev.ph.54.030192.004321