ON THE STRUCTURE OF A TABLE OF MULTIVARIATE RATIONAL INTERPOLANTS
In the table of multivariate rational interpolants the entries are arranged such that the row index indicates the number of numerator coefficients and the column index the number of denominator coefficients. If the homogeneous system of linear equations defining the denominator coefficients has maxi...
Gespeichert in:
Veröffentlicht in: | Constructive approximation 1992-03, Vol.8 (1), p.69-86 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the table of multivariate rational interpolants the entries are arranged such that the row index indicates the number of numerator coefficients and the column index the number of denominator coefficients. If the homogeneous system of linear equations defining the denominator coefficients has maximal rank, then the rational interpolant can be represented as a quotient of determinants. If this system has a rank deficiency, then we identify the rational interpolant with another element from the table using less interpolation conditions for its computation and we describe the effect this dependence of interpolation conditions has on the structure of the table of multivariate rational interpolation. In the univariate case the table of solutions to the rational interpolation problem is composed of triangles of so-called minimal solutions, having minimal degree in numerator and denominator and using a minimal number of interpolation conditions to determine the solution. |
---|---|
ISSN: | 0176-4276 1432-0940 |
DOI: | 10.1007/BF01208907 |