Targeting DNA Damage Repair Functions of Two Histone Deacetylases, HDAC8 and SIRT6, Sensitizes Acute Myeloid Leukemia to NAMPT Inhibition

Purpose: Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (NAMPTi) are currently in development, but may be limited as single-agent therapy due to compound-specific toxicity and cancer metabolic plasticity allowing resistance development. To potentially lower the doses of NAMPTis required f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2021-04, Vol.27 (8), p.2352-2366
Hauptverfasser: Zhang, Pu, Brinton, Lindsey T., Williams, Katie, Sher, Steven, Orwick, Shelley, Tzung-Huei, Lai, Mims, Alice S., Coss, Christopher C., Kulp, Samuel K., Youssef, Youssef, Chan, Wing Keung, Mitchell, Shaneice, Mustonen, Allison, Cannon, Matthew, Phillips, Hannah, Lehman, Amy M., Kauffman, Tierney, Beaver, Larry, Canfield, Daniel, Grieselhuber, Nicole R., Alinari, Lapo, Sampath, Deepa, Yan, Pearlly, Byrd, John C., Blachly, James S., Lapalombella, Rosa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (NAMPTi) are currently in development, but may be limited as single-agent therapy due to compound-specific toxicity and cancer metabolic plasticity allowing resistance development. To potentially lower the doses of NAMPTis required for therapeutic benefit against acute myeloid leukemia (AML), we performed a genome-wide CRISPRi screen to identify rational disease-specific partners for a novel NAMPTi, KPT-9274.Experimental Design: Cell lines and primary cells were analyzed for cell viability, self-renewal, and responses at RNA and protein levels with loss-of-function approaches and pharmacologic treatments. In vivo efficacy of combination therapy was evaluated with a xenograft model.Results: We identified two histone deacetylases (HDAC), HDAC8 and SIRT6, whose knockout conferred synthetic lethality with KPT-9274 in AML. Furthermore, HDAC8-specific inhibitor, PCI-34051, or clinical class I HDAC inhibitor, AR-42, in combination with KPT-9274, synergistically decreased the survival of AML cells in a dose-dependent manner. AR-42/KPT-9274 cotreatment attenuated colony-forming potentials of patient cells while sparing healthy hematopoietic cells. Importantly, combined therapy demonstrated promising in vivo efficacy compared with KPT-9274 or AR-42 monotherapy. Mechanistically, genetic inhibition of SIRT6 potentiated the effect of KPT-9274 on PARP-1 suppression by abolishing mono-ADP ribosylation. AR-42/KPT-9274 cotreatment resulted in synergistic attenuation of homologous recombination and nonhomologous end joining pathways in cell lines and leukemia-initiating cells.Conclusions: Our findings provide evidence that HDAC8 inhibition- or shSIRT6-induced DNA repair deficiencies are potently synergistic with NAMPT targeting, with minimal toxicity toward normal cells, providing a rationale for a novel-novel combination-based treatment for AML.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-20-3724