The effect of chronic intermittent hypoxia in cardiovascular gene expression is modulated by age in a mice model of sleep apnea
Study Objectives Chronic intermittent hypoxia (CIH) is a major determinant in obstructive sleep apnea cardiovascular morbidity and this effect is influenced by age. The objective of the present study was to assess the differential molecular mechanisms at gene-level expression involved in the cardiov...
Gespeichert in:
Veröffentlicht in: | Sleep (New York, N.Y.) N.Y.), 2021-06, Vol.44 (6), Article 293 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Study Objectives Chronic intermittent hypoxia (CIH) is a major determinant in obstructive sleep apnea cardiovascular morbidity and this effect is influenced by age. The objective of the present study was to assess the differential molecular mechanisms at gene-level expression involved in the cardiovascular remodeling induced by CIH according to chronological age. Methods Two- and 18-month-old mice (N = 8 each) were subjected to CIH or normoxia for 8 weeks. Total messenger RNA (mRNA) was extracted from left ventricle myocardium and aortic arch, and gene expression of 46 intermediaries of aging, oxidative stress, and inflammation was measured by quantitative real-time polymerase chain reaction. Results Cardiac gene expression of Nrf2 (2.05-fold increase, p < 0.001), Sod2 (1.9-fold increase, p = 0.035), Igf1r (1.4-fold increase, p = 0.028), Mtor (1.8-fold increase, p = 0.06), Foxo3 (1.5-fold increase, p = 0.020), Sirt4, Sirt6, and Sirt7 (1.3-fold increase, p = 0.012; 1.1-fold change, p = 0.031; 1.3-fold change, p = 0.029) was increased after CIH in young mice, but not in old mice. In aortic tissue, endothelial isoform of nitric oxide synthase was reduced in young mice (p < 0.001), Nrf2 was reduced in 80% (p < 0.001) in young mice and 45% (p = 0.07) in old mice, as its downstream antioxidant target Sod2 (82% reduced, p < 0.001). IL33 Conclusions CIH effect in gene expression is organ-dependent, and is modulated by age. CIH increased transcriptional expression of genes involved in cardioprotection and cell survival in young, but not in old mice. In aortic tissue, CIH reduced gene expression related to an antioxidant response in both young and old mice, suggesting vascular oxidative stress and a proaging process. |
---|---|
ISSN: | 0161-8105 1550-9109 |
DOI: | 10.1093/sleep/zsaa293 |