AN ADAPTIVE TEST OF STOCHASTIC MONOTONICITY

We propose a new nonparametric test of stochastic monotonicity which adapts to the unknown smoothness of the conditional distribution of interest, possesses desirable asymptotic properties, is conceptually easy to implement, and computationally attractive. In particular, we show that the test asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2021-06, Vol.37 (3), p.495-536
Hauptverfasser: Chetverikov, Denis, Wilhelm, Daniel, Kim, Dongwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new nonparametric test of stochastic monotonicity which adapts to the unknown smoothness of the conditional distribution of interest, possesses desirable asymptotic properties, is conceptually easy to implement, and computationally attractive. In particular, we show that the test asymptotically controls size at a polynomial rate, is nonconservative, and detects certain smooth local alternatives that converge to the null with the fastest possible rate. Our test is based on a data-driven bandwidth value and the critical value for the test takes this randomness into account. Monte Carlo simulations indicate that the test performs well in finite samples. In particular, the simulations show that the test controls size and, under some alternatives, is significantly more powerful than existing procedures.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466620000225