Potential Solid-State Electrolytes with Good Balance between Ionic Conductivity and Electrochemical Stability: Li5-x,M1-x,Mx′O4 (M = Al and Ga and M′ = Si and Ge)
Exploring new solid-state electrolyte (SSE) materials with good electrochemical stability and high Li-ion conductivity for all-solid-state Li-ion batteries is vital for the development of technologies. Herein, we employ two lithium aluminates, alpha- and beta-Li5AlO4 (alpha-and beta-LAO), as the mod...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-12, Vol.13 (51), p.61296-61304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploring new solid-state electrolyte (SSE) materials with good electrochemical stability and high Li-ion conductivity for all-solid-state Li-ion batteries is vital for the development of technologies. Herein, we employ two lithium aluminates, alpha- and beta-Li5AlO4 (alpha-and beta-LAO), as the model framework, which have an orthorhombic crystal structure and isolated AlO4 tetrahedron units connected in lithium atoms, exhibiting large band gaps, low migration barriers (0.30-0.40 eV), fast Li-ion conductivity (LIC, in a magnitude of 10(-4) S/cm), and a good electrochemical stability window (ESW, [0.01-3.20 V] vs Li+/Li). We tabulate the expected decomposition products at the interface, while considering cathodes in combination with the LAO electrolyte to discuss their compatibility. We also examine the electrochemical stability, H2O/CO2 stability, and Li-ion mobility of Li4.6Al0.6Si0.4O4 (LASO), Li5GaO4 (LGaO), and Li4.6Ga0.6Ge0.4O4 (LGaGeO) compounds. In general, there is usually a trade-off between the LIC and the ESW; however, LAO features a good balance between an outstanding LIC and a wide ESW, making the compound a promising candidate for next-generation SSE materials. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.1c19922 |