Spray-Induced Gene Silencing as a Potential Tool to Control Potato Late Blight Disease
Phytophthora infestans causes late blight disease on potato and tomato and is currently controlled by resistant cultivars or intensive fungicide spraying. Here, we investigated an alternative means for late blight control by spraying potato leaves with double-stranded RNAs (dsRNA) that target the P....
Gespeichert in:
Veröffentlicht in: | Phytopathology 2021-12, Vol.111 (12), p.2168-2175 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phytophthora infestans causes late blight disease on potato and tomato and is currently controlled by resistant cultivars or intensive fungicide spraying. Here, we investigated an alternative means for late blight control by spraying potato leaves with double-stranded RNAs (dsRNA) that target the P. infestans genes essential for infection. First, we showed that the sporangia of P. infestans expressing green fluorescent protein (GFP) can take up in vitro synthesized dsRNAs homologous to GFP directly from their surroundings, including leaves, which led to the reduced relative expression of GFP. We further demonstrate the potential of spray-induced gene silencing (SIGS) in controlling potato late blight disease by targeting developmentally important genes in P. infestans such as guanine-nucleotide binding protein beta-subunit (PiGPB1), haustorial membrane protein (PiHmp1), cutinase (PiCut3), and endo-1,3(4)-beta-glucanase (PiEndo3). Our results demonstrate that SIGS can potentially be used to mitigate potato late blight; however, the degree of disease control is dependent on the selection of the target genes. |
---|---|
ISSN: | 0031-949X 1943-7684 1943-7684 |
DOI: | 10.1094/PHYTO-02-21-0054-SC |