The formation of binary star clusters in the Milky Way and Large Magellanic Cloud

ABSTRACT Recent observations of young embedded clumpy clusters and statistical identifications of binary star clusters have provided new insights into the formation process and subsequent dynamical evolution of star clusters. The early dynamical evolution of clumpy stellar structures provides the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-09, Vol.506 (3), p.4603-4620
Hauptverfasser: Darma, R, Arifyanto, M I, Kouwenhoven, M B N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Recent observations of young embedded clumpy clusters and statistical identifications of binary star clusters have provided new insights into the formation process and subsequent dynamical evolution of star clusters. The early dynamical evolution of clumpy stellar structures provides the conditions for the origin of binary star clusters. Here, we carry out N-body simulations in order to investigate the formation of binary star clusters in the Milky Way and in the Large Magellanic Cloud (LMC). We find that binary star clusters can form from stellar aggregates with a variety of initial conditions. For a given initial virial ratio, a higher degree of initial substructure results in a higher fraction of binary star clusters. The number of binary star clusters decreases over time due to merging or dissolution of the binary system. Typically, $\sim 45{{\ \rm per\ cent}}$ of the aggregates evolve into binary/multiple clusters within t = 20 Myr in the Milky Way environment, while merely $\sim 30{{\ \rm per\ cent}}$ survives beyond t = 50 Myr, with separations ≲ 50 pc. On the other hand, in the LMC, $\sim 90{{\ \rm per\ cent}}$ of the binary/multiple clusters survive beyond t = 20 Myr and the fraction decreases to $\sim 80{{\ \rm per\ cent}}$ at t = 50 Myr, with separations ≲ 35 pc. Multiple clusters are also rapidly formed for highly substructured and expanding clusters. The additional components tend to detach and the remaining binary star cluster merges. The merging process can produce fast rotating star clusters with mostly flat rotation curves that speed up in the outskirts.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab1931