Comparison of Single- and Multipipe Earth-to-Air Heat Exchangers in Terms of Energy Gains and Electricity Consumption: A Case Study for the Temperate Climate of Central Europe
Earth-to-air heat exchangers (EAHEs) can be used in the ventilation systems of various types of buildings. Multipipe structures can be found in large-volume buildings, yet scientific analysis of such systems is rare. Annual energy gains and electricity consumption for equivalent single-pipe and mult...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-12, Vol.14 (24), p.8217, Article 8217 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Earth-to-air heat exchangers (EAHEs) can be used in the ventilation systems of various types of buildings. Multipipe structures can be found in large-volume buildings, yet scientific analysis of such systems is rare. Annual energy gains and electricity consumption for equivalent single-pipe and multipipe systems are typically not available. This paper bridges this gap, presenting the results of experimental studies on pressure losses in three-, five- and seven-pipe EAHEs and analysis for the annual energy gains and electric energy consumption as compared to a single-pipe exchanger. The results showed that the multipipe EAHE can be successfully replaced by a single-pipe structure with the same thermal performance and similar pressure losses if a tube with the appropriate diameter is used. However, multipipe heat exchangers can also use pipes of larger diameter (manifolds and/or branches), which improves their energy efficiency and may then make them more advantageous than single-pipe structures. From this reason, ultimately, the final selection of exchanger geometry should take into account economic and environmental issues and also user preferences and their importance in the hierarchy. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14248217 |