Histidine Functionalized Gold Nanoparticles for Screening Aminoglycosides and Nanomolar Level Detection of Streptomycin in Water, Milk, and Whey

Aminoglycoside (AMG) antibiotics are being applied to treat infections caused by Gram-negative bacteria, mainly in livestock, and are prescribed only in severe cases because of their adverse impacts on human health and the environment. Monitoring antibiotic residues in dairy products relies on the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosensors 2021-12, Vol.9 (12), p.358, Article 358
Hauptverfasser: Shinde, Surendra Krushna, Kim, Dae-Young, Saratale, Rijuta Ganesh, Kadam, Avinash Ashok, Saratale, Ganesh Dattatraya, Syed, Asad, Bahkali, Ali H., Ghodake, Gajanan Sampatrao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aminoglycoside (AMG) antibiotics are being applied to treat infections caused by Gram-negative bacteria, mainly in livestock, and are prescribed only in severe cases because of their adverse impacts on human health and the environment. Monitoring antibiotic residues in dairy products relies on the accessibility of portable and efficient analytical techniques. Presently, high-throughput screening techniques have been proposed to detect several antimicrobial drugs having identical structural and functional features. The L-histidine functionalized gold nanoparticles (His@AuNPs) do not form a complex with other tested antibiotic classes but show high selectivity for AMG antibiotics. We used ligand-induced aggregation of His@AuNPs as a rapid and sensitive localized surface plasmon resonance (LSPR) assay for AMG antibiotics, producing longitudinal extinction shifts at 660 nm. Herein, we explore the practical application of His@AuNPs to detect streptomycin spiked in water, milk, and whey fraction of milk with nanomolar level sensitivity. The ability of the analytical method to recognize target analytes sensitively and rapidly is of great significance to perform monitoring, thus would certainly reassure widespread use of AMG antibiotics. The biosynthesis of hybrid organic-inorganic metal nanoparticles like His@AuNPs with desired size distribution, stability, and specific host-guest recognition proficiency, would further facilitate applications in various other fields.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors9120358