JAX, MD A framework for differentiable physics

We introduce JAX MD, a software package for performing differentiable physics simulations with a focus on molecular dynamics. JAX MD includes a number of physics simulation environments, as well as interaction potentials and neural networks that can be integrated into these environments without writ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical mechanics 2021-12, Vol.2021 (12), p.124016, Article 124016
Hauptverfasser: Schoenholz, Samuel S., Cubuk, Ekin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce JAX MD, a software package for performing differentiable physics simulations with a focus on molecular dynamics. JAX MD includes a number of physics simulation environments, as well as interaction potentials and neural networks that can be integrated into these environments without writing any additional code. Since the simulations themselves are differentiable functions, entire trajectories can be differentiated to perform meta-optimization. These features are built on primitive operations, such as spatial partitioning, that allow simulations to scale to hundreds-of-thousands of particles on a single GPU. These primitives are flexible enough that they can be used to scale up workloads outside of molecular dynamics. We present several examples that highlight the features of JAX MD including: integration of graph neural networks into traditional simulations, meta-optimization through minimization of particle packings, and a multi-agent flocking simulation. JAX MD is available at https://www.github.com/google/jax-md.Y
ISSN:1742-5468
1742-5468
DOI:10.1088/1742-5468/ac3ae9