GPU algorithms for Efficient Exascale Discretizations
In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order applications on GPU-accelerated platforms. We discuss the GPU...
Gespeichert in:
Veröffentlicht in: | Parallel computing 2021-12, Vol.108 (N/A), p.102841, Article 102841 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order applications on GPU-accelerated platforms. We discuss the GPU developments in several components of the CEED software stack, including the libCEED, MAGMA, MFEM, libParanumal, and Nek projects. We report performance and capability improvements in several CEED-enabled applications on both NVIDIA and AMD GPU systems.
•Exascale machines require rethinking of the large-scale simulation codes algorithms.•High-order finite elements can enhance the performance of exascale applications.•The CEED project in ECP develops high-order algorithms optimized for GPU platforms.•Several CEED components have been ported to both NVIDIA and AMD GPU systems. |
---|---|
ISSN: | 0167-8191 1872-7336 |
DOI: | 10.1016/j.parco.2021.102841 |