Sequential Congo Red Elimination by UASB Reactor Coupled to Electrochemical Systems

Response surface methodology was investigated to determine the operational parameters on the degradation of Congo red dye (CR) and chemical oxygen demand (COD) in two electrochemical systems evaluated individually on effluent pretreated by an up-flow anaerobic sludge blanket (UASB) reactor. The UASB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-11, Vol.13 (21), p.3087, Article 3087
Hauptverfasser: Romero-Soto, Itzel Celeste, Garcia-Gomez, Celestino, Alvarez-Valencia, Luis Humberto, Meza-Escalante, Edna Rosalba, Leyva-Soto, Luis Alonso, Camacho-Ruiz, Maria Angeles, Concha-Guzman, Maria Olga, Ulloa-Mercado, Ruth Gabriela, Diaz-Tenorio, Lourdes Mariana, Gortares-Moroyoqui, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Response surface methodology was investigated to determine the operational parameters on the degradation of Congo red dye (CR) and chemical oxygen demand (COD) in two electrochemical systems evaluated individually on effluent pretreated by an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was fed with 100 mg L-1 of CR and was operated for 12 weeks at different hydraulic residence times (HRTs) of 12 h, 10 h, and 8 h. Once stabilized at an HRT of 8 h, the effluent was collected, homogenized, and independently treated by electrooxidation (EO) and electrocoagulation (EC) cells. On both electrochemical systems, two electrode pairs were used; solid for EC (Fe and stainless-steel) and mesh electrodes for EO (Ti/PbO2 and Ti), and the effect of intensity (A), recirculation flow rate (mL min(-1)), and experimental time (min) was optimized on response variables. The maximum efficiencies of sequential systems for COD degradation and CR decolorization were 92.78% and 98.43% by EC and & GE;99.84% and & GE;99.71% by EO, respectively. Results indicate that the coupled systems can be used in textile industry wastewater treatment for the removal of dyes and the decolorized by-products.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13213087