Quasiconformal Jordan Domains

We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains ( , ). We say that a metric space ( , ) is a if the completion ̄ of ( , ) has finite Hausdorff 2-measure, the ∂ = ̄ \ is homeomorphic to S , and there exists a homeomorphism : D →( , ) that is quasiconformal in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and Geometry in Metric Spaces 2021-01, Vol.9 (1), p.167-185
1. Verfasser: Ikonen, Toni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains ( , ). We say that a metric space ( , ) is a if the completion ̄ of ( , ) has finite Hausdorff 2-measure, the ∂ = ̄ \ is homeomorphic to S , and there exists a homeomorphism : D →( , ) that is quasiconformal in the geometric sense. We show that has a continuous, monotone, and surjective extension Φ: D ̄ → ̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of to S being a quasisymmetry and to being bi-Lipschitz equivalent to a quasicircle in the plane.
ISSN:2299-3274
2299-3274
DOI:10.1515/agms-2020-0127