Quasiconformal Jordan Domains
We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains ( , ). We say that a metric space ( , ) is a if the completion ̄ of ( , ) has finite Hausdorff 2-measure, the ∂ = ̄ \ is homeomorphic to S , and there exists a homeomorphism : D →( , ) that is quasiconformal in t...
Gespeichert in:
Veröffentlicht in: | Analysis and Geometry in Metric Spaces 2021-01, Vol.9 (1), p.167-185 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains (
,
). We say that a metric space (
,
) is a
if the completion ̄
of (
,
) has finite Hausdorff 2-measure, the
∂
= ̄
\
is homeomorphic to S
, and there exists a homeomorphism
: D →(
,
) that is quasiconformal in the geometric sense.
We show that
has a continuous, monotone, and surjective extension Φ: D ̄ →
̄. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for
to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of
to S
being a quasisymmetry and to
being bi-Lipschitz equivalent to a quasicircle in the plane. |
---|---|
ISSN: | 2299-3274 2299-3274 |
DOI: | 10.1515/agms-2020-0127 |