Calibration and Validation of a Cone Crusher Model with Industrial Data

This paper reports the calibration and validation of a cone crusher model using industrial data. Usually, there are three calibration parameters in the condensed breakage function; by contrast, in this work, every entry of the lower triangular breakage function matrix is considered a calibration par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-11, Vol.11 (11), p.1256, Article 1256
Hauptverfasser: Duarte, Robson A., Yamashita, Andre S., da Silva, Moises T., Cota, Luciano P., Euzebio, Thiago A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports the calibration and validation of a cone crusher model using industrial data. Usually, there are three calibration parameters in the condensed breakage function; by contrast, in this work, every entry of the lower triangular breakage function matrix is considered a calibration parameter. The calibration problem is cast as an optimization problem based on the least squares method. The results show that the calibrated model is able to fit the validation datasets closely, as seen from the low values of the objective function. Another significant advantage of the proposed approach is that the model can be calibrated on data that are usually available from industrial operation; no additional laboratory tests are required. Calibration and validation tests on datasets collected from two different mines show that the calibrated model is a strong candidate for use in various dynamic simulation applications, such as control system design, equipment sizing, operator training, and optimization of crushing circuits.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11111256